Evaluate
\frac{14285714285714285616051345478459}{14285714285714285332765922017296}\approx 1
Factor
\frac{17 \cdot 419 \cdot 7411 \cdot 93487 \cdot 557844467 \cdot 5189169407}{3 \cdot 47 \cdot 21179 \cdot 22769 \cdot 25253 \cdot 126001 \cdot 4126924147 \cdot 2 ^ {4}} = 1
Share
Copied to clipboard
{(1 + 0.6494075931975106)} {(1 + 0.2125565616700221)} \cdot \frac{1}{{(1 + 0.3249196962329063)} {(1 + 0.5095254494944288)}}
Evaluate trigonometric functions in the problem
1.6494075931975106\left(1+0.2125565616700221\right)\times \frac{1}{\left(1+0.3249196962329063\right)\left(1+0.5095254494944288\right)}
Add 1 and 0.6494075931975106 to get 1.6494075931975106.
1.6494075931975106\times 1.2125565616700221\times \frac{1}{\left(1+0.3249196962329063\right)\left(1+0.5095254494944288\right)}
Add 1 and 0.2125565616700221 to get 1.2125565616700221.
1.99999999999999998624718836698426\times \frac{1}{\left(1+0.3249196962329063\right)\left(1+0.5095254494944288\right)}
Multiply 1.6494075931975106 and 1.2125565616700221 to get 1.99999999999999998624718836698426.
1.99999999999999998624718836698426\times \frac{1}{1.3249196962329063\left(1+0.5095254494944288\right)}
Add 1 and 0.3249196962329063 to get 1.3249196962329063.
1.99999999999999998624718836698426\times \frac{1}{1.3249196962329063\times 1.5095254494944288}
Add 1 and 0.5095254494944288 to get 1.5095254494944288.
1.99999999999999998624718836698426\times \frac{1}{1.99999999999999994658722908242144}
Multiply 1.3249196962329063 and 1.5095254494944288 to get 1.99999999999999994658722908242144.
1.99999999999999998624718836698426\times \frac{100000000000000000000000000000000}{199999999999999994658722908242144}
Expand \frac{1}{1.99999999999999994658722908242144} by multiplying both numerator and the denominator by 100000000000000000000000000000000.
1.99999999999999998624718836698426\times \frac{3125000000000000000000000000000}{6249999999999999833085090882567}
Reduce the fraction \frac{100000000000000000000000000000000}{199999999999999994658722908242144} to lowest terms by extracting and canceling out 32.
\frac{99999999999999999312359418349213}{50000000000000000000000000000000}\times \frac{3125000000000000000000000000000}{6249999999999999833085090882567}
Convert decimal number 1.99999999999999998624718836698426 to fraction \frac{99999999999999999312359418349213}{10000000000}. Reduce the fraction \frac{99999999999999999312359418349213}{10000000000} to lowest terms by extracting and canceling out 1.
\frac{99999999999999999312359418349213\times 3125000000000000000000000000000}{50000000000000000000000000000000\times 6249999999999999833085090882567}
Multiply \frac{99999999999999999312359418349213}{50000000000000000000000000000000} times \frac{3125000000000000000000000000000}{6249999999999999833085090882567} by multiplying numerator times numerator and denominator times denominator.
\frac{312499999999999997851123182341290625000000000000000000000000000}{312499999999999991654254544128350000000000000000000000000000000}
Do the multiplications in the fraction \frac{99999999999999999312359418349213\times 3125000000000000000000000000000}{50000000000000000000000000000000\times 6249999999999999833085090882567}.
\frac{14285714285714285616051345478459}{14285714285714285332765922017296}
Reduce the fraction \frac{312499999999999997851123182341290625000000000000000000000000000}{312499999999999991654254544128350000000000000000000000000000000} to lowest terms by extracting and canceling out 21875000000000000000000000000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}