Evaluate
\frac{646}{275}\approx 2.349090909
Factor
\frac{2 \cdot 17 \cdot 19}{5 ^ {2} \cdot 11} = 2\frac{96}{275} = 2.349090909090909
Share
Copied to clipboard
\frac{\frac{99+5}{99}+\frac{3\times 33+5}{33}\times \frac{9\times 11+5}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply 1 and 99 to get 99.
\frac{\frac{104}{99}+\frac{3\times 33+5}{33}\times \frac{9\times 11+5}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 99 and 5 to get 104.
\frac{\frac{104}{99}+\frac{99+5}{33}\times \frac{9\times 11+5}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply 3 and 33 to get 99.
\frac{\frac{104}{99}+\frac{104}{33}\times \frac{9\times 11+5}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 99 and 5 to get 104.
\frac{\frac{104}{99}+\frac{104}{33}\times \frac{99+5}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply 9 and 11 to get 99.
\frac{\frac{104}{99}+\frac{104}{33}\times \frac{104}{11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 99 and 5 to get 104.
\frac{\frac{104}{99}+\frac{104\times 104}{33\times 11}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply \frac{104}{33} times \frac{104}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{104}{99}+\frac{10816}{363}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Do the multiplications in the fraction \frac{104\times 104}{33\times 11}.
\frac{\frac{1144}{1089}+\frac{32448}{1089}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Least common multiple of 99 and 363 is 1089. Convert \frac{104}{99} and \frac{10816}{363} to fractions with denominator 1089.
\frac{\frac{1144+32448}{1089}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Since \frac{1144}{1089} and \frac{32448}{1089} have the same denominator, add them by adding their numerators.
\frac{\frac{33592}{1089}}{\frac{1\times 99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 1144 and 32448 to get 33592.
\frac{\frac{33592}{1089}}{\frac{99+1}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Multiply 1 and 99 to get 99.
\frac{\frac{33592}{1089}}{\frac{100}{99}+\frac{3\times 33+1}{33}+\frac{9\times 11+1}{11}}
Add 99 and 1 to get 100.
\frac{\frac{33592}{1089}}{\frac{100}{99}+\frac{99+1}{33}+\frac{9\times 11+1}{11}}
Multiply 3 and 33 to get 99.
\frac{\frac{33592}{1089}}{\frac{100}{99}+\frac{100}{33}+\frac{9\times 11+1}{11}}
Add 99 and 1 to get 100.
\frac{\frac{33592}{1089}}{\frac{100}{99}+\frac{300}{99}+\frac{9\times 11+1}{11}}
Least common multiple of 99 and 33 is 99. Convert \frac{100}{99} and \frac{100}{33} to fractions with denominator 99.
\frac{\frac{33592}{1089}}{\frac{100+300}{99}+\frac{9\times 11+1}{11}}
Since \frac{100}{99} and \frac{300}{99} have the same denominator, add them by adding their numerators.
\frac{\frac{33592}{1089}}{\frac{400}{99}+\frac{9\times 11+1}{11}}
Add 100 and 300 to get 400.
\frac{\frac{33592}{1089}}{\frac{400}{99}+\frac{99+1}{11}}
Multiply 9 and 11 to get 99.
\frac{\frac{33592}{1089}}{\frac{400}{99}+\frac{100}{11}}
Add 99 and 1 to get 100.
\frac{\frac{33592}{1089}}{\frac{400}{99}+\frac{900}{99}}
Least common multiple of 99 and 11 is 99. Convert \frac{400}{99} and \frac{100}{11} to fractions with denominator 99.
\frac{\frac{33592}{1089}}{\frac{400+900}{99}}
Since \frac{400}{99} and \frac{900}{99} have the same denominator, add them by adding their numerators.
\frac{\frac{33592}{1089}}{\frac{1300}{99}}
Add 400 and 900 to get 1300.
\frac{33592}{1089}\times \frac{99}{1300}
Divide \frac{33592}{1089} by \frac{1300}{99} by multiplying \frac{33592}{1089} by the reciprocal of \frac{1300}{99}.
\frac{33592\times 99}{1089\times 1300}
Multiply \frac{33592}{1089} times \frac{99}{1300} by multiplying numerator times numerator and denominator times denominator.
\frac{3325608}{1415700}
Do the multiplications in the fraction \frac{33592\times 99}{1089\times 1300}.
\frac{646}{275}
Reduce the fraction \frac{3325608}{1415700} to lowest terms by extracting and canceling out 5148.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}