Evaluate
4.6
Factor
\frac{23}{5} = 4\frac{3}{5} = 4.6
Share
Copied to clipboard
\frac{\frac{8+3}{8}+\frac{1\times 4+3}{4}-0.411}{0.59}
Multiply 1 and 8 to get 8.
\frac{\frac{11}{8}+\frac{1\times 4+3}{4}-0.411}{0.59}
Add 8 and 3 to get 11.
\frac{\frac{11}{8}+\frac{4+3}{4}-0.411}{0.59}
Multiply 1 and 4 to get 4.
\frac{\frac{11}{8}+\frac{7}{4}-0.411}{0.59}
Add 4 and 3 to get 7.
\frac{\frac{11}{8}+\frac{14}{8}-0.411}{0.59}
Least common multiple of 8 and 4 is 8. Convert \frac{11}{8} and \frac{7}{4} to fractions with denominator 8.
\frac{\frac{11+14}{8}-0.411}{0.59}
Since \frac{11}{8} and \frac{14}{8} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{8}-0.411}{0.59}
Add 11 and 14 to get 25.
\frac{\frac{25}{8}-\frac{411}{1000}}{0.59}
Convert decimal number 0.411 to fraction \frac{411}{1000}.
\frac{\frac{3125}{1000}-\frac{411}{1000}}{0.59}
Least common multiple of 8 and 1000 is 1000. Convert \frac{25}{8} and \frac{411}{1000} to fractions with denominator 1000.
\frac{\frac{3125-411}{1000}}{0.59}
Since \frac{3125}{1000} and \frac{411}{1000} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2714}{1000}}{0.59}
Subtract 411 from 3125 to get 2714.
\frac{\frac{1357}{500}}{0.59}
Reduce the fraction \frac{2714}{1000} to lowest terms by extracting and canceling out 2.
\frac{1357}{500\times 0.59}
Express \frac{\frac{1357}{500}}{0.59} as a single fraction.
\frac{1357}{295}
Multiply 500 and 0.59 to get 295.
\frac{23}{5}
Reduce the fraction \frac{1357}{295} to lowest terms by extracting and canceling out 59.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}