Evaluate
0.9
Factor
\frac{3 ^ {2}}{2 \cdot 5} = 0.9
Share
Copied to clipboard
\frac{\frac{14}{500}-0.01}{0.02}
Expand \frac{0.14}{5} by multiplying both numerator and the denominator by 100.
\frac{\frac{7}{250}-0.01}{0.02}
Reduce the fraction \frac{14}{500} to lowest terms by extracting and canceling out 2.
\frac{\frac{7}{250}-\frac{1}{100}}{0.02}
Convert decimal number 0.01 to fraction \frac{1}{100}.
\frac{\frac{14}{500}-\frac{5}{500}}{0.02}
Least common multiple of 250 and 100 is 500. Convert \frac{7}{250} and \frac{1}{100} to fractions with denominator 500.
\frac{\frac{14-5}{500}}{0.02}
Since \frac{14}{500} and \frac{5}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{500}}{0.02}
Subtract 5 from 14 to get 9.
\frac{9}{500\times 0.02}
Express \frac{\frac{9}{500}}{0.02} as a single fraction.
\frac{9}{10}
Multiply 500 and 0.02 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}