Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-2\left(0+2\right)x+2\left(0-1\right)=0
Subtract 2 from 0 to get -2.
-2x^{2}-2\times 2x+2\left(0-1\right)=0
Add 0 and 2 to get 2.
-2x^{2}-4x+2\left(0-1\right)=0
Multiply 2 and 2 to get 4.
-2x^{2}-4x+2\left(-1\right)=0
Subtract 1 from 0 to get -1.
-2x^{2}-4x-2=0
Multiply 2 and -1 to get -2.
-x^{2}-2x-1=0
Divide both sides by 2.
a+b=-2 ab=-\left(-1\right)=1
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-1 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(-x^{2}-x\right)+\left(-x-1\right)
Rewrite -x^{2}-2x-1 as \left(-x^{2}-x\right)+\left(-x-1\right).
x\left(-x-1\right)-x-1
Factor out x in -x^{2}-x.
\left(-x-1\right)\left(x+1\right)
Factor out common term -x-1 by using distributive property.
x=-1 x=-1
To find equation solutions, solve -x-1=0 and x+1=0.
-2x^{2}-2\left(0+2\right)x+2\left(0-1\right)=0
Subtract 2 from 0 to get -2.
-2x^{2}-2\times 2x+2\left(0-1\right)=0
Add 0 and 2 to get 2.
-2x^{2}-4x+2\left(0-1\right)=0
Multiply 2 and 2 to get 4.
-2x^{2}-4x+2\left(-1\right)=0
Subtract 1 from 0 to get -1.
-2x^{2}-4x-2=0
Multiply 2 and -1 to get -2.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, -4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+8\left(-2\right)}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2\left(-2\right)}
Multiply 8 times -2.
x=\frac{-\left(-4\right)±\sqrt{0}}{2\left(-2\right)}
Add 16 to -16.
x=-\frac{-4}{2\left(-2\right)}
Take the square root of 0.
x=\frac{4}{2\left(-2\right)}
The opposite of -4 is 4.
x=\frac{4}{-4}
Multiply 2 times -2.
x=-1
Divide 4 by -4.
-2x^{2}-2\left(0+2\right)x+2\left(0-1\right)=0
Subtract 2 from 0 to get -2.
-2x^{2}-2\times 2x+2\left(0-1\right)=0
Add 0 and 2 to get 2.
-2x^{2}-4x+2\left(0-1\right)=0
Multiply 2 and 2 to get 4.
-2x^{2}-4x+2\left(-1\right)=0
Subtract 1 from 0 to get -1.
-2x^{2}-4x-2=0
Multiply 2 and -1 to get -2.
-2x^{2}-4x=2
Add 2 to both sides. Anything plus zero gives itself.
\frac{-2x^{2}-4x}{-2}=\frac{2}{-2}
Divide both sides by -2.
x^{2}+\left(-\frac{4}{-2}\right)x=\frac{2}{-2}
Dividing by -2 undoes the multiplication by -2.
x^{2}+2x=\frac{2}{-2}
Divide -4 by -2.
x^{2}+2x=-1
Divide 2 by -2.
x^{2}+2x+1^{2}=-1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=-1+1
Square 1.
x^{2}+2x+1=0
Add -1 to 1.
\left(x+1\right)^{2}=0
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x+1=0 x+1=0
Simplify.
x=-1 x=-1
Subtract 1 from both sides of the equation.
x=-1
The equation is now solved. Solutions are the same.