Evaluate
-\frac{98}{9}\approx -10.888888889
Factor
-\frac{98}{9} = -10\frac{8}{9} = -10.88888888888889
Share
Copied to clipboard
\frac{-5+4}{-9}-\lfloor 2-\left(-4-2\right)-\left(-1^{3}\right)\left(-5+8\right)\rfloor
Calculate 2 to the power of 2 and get 4.
\frac{-1}{-9}-\lfloor 2-\left(-4-2\right)-\left(-1^{3}\right)\left(-5+8\right)\rfloor
Add -5 and 4 to get -1.
\frac{1}{9}-\lfloor 2-\left(-4-2\right)-\left(-1^{3}\right)\left(-5+8\right)\rfloor
Fraction \frac{-1}{-9} can be simplified to \frac{1}{9} by removing the negative sign from both the numerator and the denominator.
\frac{1}{9}-\lfloor 2-\left(-6\right)-\left(-1^{3}\right)\left(-5+8\right)\rfloor
Subtract 2 from -4 to get -6.
\frac{1}{9}-\lfloor 2+6-\left(-1^{3}\right)\left(-5+8\right)\rfloor
The opposite of -6 is 6.
\frac{1}{9}-\lfloor 8-\left(-1^{3}\right)\left(-5+8\right)\rfloor
Add 2 and 6 to get 8.
\frac{1}{9}-\lfloor 8-\left(-\left(-5+8\right)\right)\rfloor
Calculate 1 to the power of 3 and get 1.
\frac{1}{9}-\lfloor 8-\left(-3\right)\rfloor
Add -5 and 8 to get 3.
\frac{1}{9}-\lfloor 8+3\rfloor
The opposite of -3 is 3.
\frac{1}{9}-\lfloor 11\rfloor
Add 8 and 3 to get 11.
\frac{1}{9}-11
The floor of a real number a is the largest integer number less than or equal to a. The floor of 11 is 11.
\frac{1}{9}-\frac{99}{9}
Convert 11 to fraction \frac{99}{9}.
\frac{1-99}{9}
Since \frac{1}{9} and \frac{99}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{98}{9}
Subtract 99 from 1 to get -98.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}