Solve for x (complex solution)
x=\frac{-\sqrt{8039}i-571}{1152}\approx -0.495659722-0.07783027i
Graph
Share
Copied to clipboard
\left(\left(-4x-2\right)\times 6\right)^{2}=\left(\sqrt{5x-1}\right)^{2}
Square both sides of the equation.
\left(-24x-12\right)^{2}=\left(\sqrt{5x-1}\right)^{2}
Use the distributive property to multiply -4x-2 by 6.
576x^{2}+576x+144=\left(\sqrt{5x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-24x-12\right)^{2}.
576x^{2}+576x+144=5x-1
Calculate \sqrt{5x-1} to the power of 2 and get 5x-1.
576x^{2}+576x+144-5x=-1
Subtract 5x from both sides.
576x^{2}+571x+144=-1
Combine 576x and -5x to get 571x.
576x^{2}+571x+144+1=0
Add 1 to both sides.
576x^{2}+571x+145=0
Add 144 and 1 to get 145.
x=\frac{-571±\sqrt{571^{2}-4\times 576\times 145}}{2\times 576}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 576 for a, 571 for b, and 145 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-571±\sqrt{326041-4\times 576\times 145}}{2\times 576}
Square 571.
x=\frac{-571±\sqrt{326041-2304\times 145}}{2\times 576}
Multiply -4 times 576.
x=\frac{-571±\sqrt{326041-334080}}{2\times 576}
Multiply -2304 times 145.
x=\frac{-571±\sqrt{-8039}}{2\times 576}
Add 326041 to -334080.
x=\frac{-571±\sqrt{8039}i}{2\times 576}
Take the square root of -8039.
x=\frac{-571±\sqrt{8039}i}{1152}
Multiply 2 times 576.
x=\frac{-571+\sqrt{8039}i}{1152}
Now solve the equation x=\frac{-571±\sqrt{8039}i}{1152} when ± is plus. Add -571 to i\sqrt{8039}.
x=\frac{-\sqrt{8039}i-571}{1152}
Now solve the equation x=\frac{-571±\sqrt{8039}i}{1152} when ± is minus. Subtract i\sqrt{8039} from -571.
x=\frac{-571+\sqrt{8039}i}{1152} x=\frac{-\sqrt{8039}i-571}{1152}
The equation is now solved.
\left(-4\times \frac{-571+\sqrt{8039}i}{1152}-2\right)\times 6=\sqrt{5\times \frac{-571+\sqrt{8039}i}{1152}-1}
Substitute \frac{-571+\sqrt{8039}i}{1152} for x in the equation \left(-4x-2\right)\times 6=\sqrt{5x-1}.
-\frac{5}{48}-\frac{1}{48}i\times 8039^{\frac{1}{2}}=\frac{5}{48}+\frac{1}{48}i\times 8039^{\frac{1}{2}}
Simplify. The value x=\frac{-571+\sqrt{8039}i}{1152} does not satisfy the equation.
\left(-4\times \frac{-\sqrt{8039}i-571}{1152}-2\right)\times 6=\sqrt{5\times \frac{-\sqrt{8039}i-571}{1152}-1}
Substitute \frac{-\sqrt{8039}i-571}{1152} for x in the equation \left(-4x-2\right)\times 6=\sqrt{5x-1}.
\frac{1}{48}i\times 8039^{\frac{1}{2}}-\frac{5}{48}=-\left(\frac{5}{48}-\frac{1}{48}i\times 8039^{\frac{1}{2}}\right)
Simplify. The value x=\frac{-\sqrt{8039}i-571}{1152} satisfies the equation.
x=\frac{-\sqrt{8039}i-571}{1152}
Equation 6\left(-4x-2\right)=\sqrt{5x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}