Evaluate
-19-17i
Real Part
-19
Share
Copied to clipboard
-3+5i-\left(4\times 1+4\times \left(6i\right)-2i-2\times 6i^{2}\right)
Multiply complex numbers 4-2i and 1+6i like you multiply binomials.
-3+5i-\left(4\times 1+4\times \left(6i\right)-2i-2\times 6\left(-1\right)\right)
By definition, i^{2} is -1.
-3+5i-\left(4+24i-2i+12\right)
Do the multiplications in 4\times 1+4\times \left(6i\right)-2i-2\times 6\left(-1\right).
-3+5i-\left(4+12+\left(24-2\right)i\right)
Combine the real and imaginary parts in 4+24i-2i+12.
-3+5i-\left(16+22i\right)
Do the additions in 4+12+\left(24-2\right)i.
-3-16+\left(5-22\right)i
Subtract 16+22i from -3+5i by subtracting corresponding real and imaginary parts.
-19-17i
Subtract 16 from -3. Subtract 22 from 5.
Re(-3+5i-\left(4\times 1+4\times \left(6i\right)-2i-2\times 6i^{2}\right))
Multiply complex numbers 4-2i and 1+6i like you multiply binomials.
Re(-3+5i-\left(4\times 1+4\times \left(6i\right)-2i-2\times 6\left(-1\right)\right))
By definition, i^{2} is -1.
Re(-3+5i-\left(4+24i-2i+12\right))
Do the multiplications in 4\times 1+4\times \left(6i\right)-2i-2\times 6\left(-1\right).
Re(-3+5i-\left(4+12+\left(24-2\right)i\right))
Combine the real and imaginary parts in 4+24i-2i+12.
Re(-3+5i-\left(16+22i\right))
Do the additions in 4+12+\left(24-2\right)i.
Re(-3-16+\left(5-22\right)i)
Subtract 16+22i from -3+5i by subtracting corresponding real and imaginary parts.
Re(-19-17i)
Subtract 16 from -3. Subtract 22 from 5.
-19
The real part of -19-17i is -19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}