Evaluate
-11\sqrt{10}-7\approx -41.785054262
Share
Copied to clipboard
-3\left(\sqrt{5}\right)^{2}-12\sqrt{5}\sqrt{2}+\sqrt{2}\sqrt{5}+4\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of -3\sqrt{5}+\sqrt{2} by each term of \sqrt{5}+4\sqrt{2}.
-3\times 5-12\sqrt{5}\sqrt{2}+\sqrt{2}\sqrt{5}+4\left(\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
-15-12\sqrt{5}\sqrt{2}+\sqrt{2}\sqrt{5}+4\left(\sqrt{2}\right)^{2}
Multiply -3 and 5 to get -15.
-15-12\sqrt{10}+\sqrt{2}\sqrt{5}+4\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
-15-12\sqrt{10}+\sqrt{10}+4\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
-15-11\sqrt{10}+4\left(\sqrt{2}\right)^{2}
Combine -12\sqrt{10} and \sqrt{10} to get -11\sqrt{10}.
-15-11\sqrt{10}+4\times 2
The square of \sqrt{2} is 2.
-15-11\sqrt{10}+8
Multiply 4 and 2 to get 8.
-7-11\sqrt{10}
Add -15 and 8 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}