Evaluate
6x^{2}-17x-7
Expand
6x^{2}-17x-7
Graph
Share
Copied to clipboard
-4x^{2}-2x+6x+3-\left(2x-5\right)\left(-5x-2\right)
Apply the distributive property by multiplying each term of -2x+3 by each term of 2x+1.
-4x^{2}+4x+3-\left(2x-5\right)\left(-5x-2\right)
Combine -2x and 6x to get 4x.
-4x^{2}+4x+3-\left(-10x^{2}-4x+25x+10\right)
Apply the distributive property by multiplying each term of 2x-5 by each term of -5x-2.
-4x^{2}+4x+3-\left(-10x^{2}+21x+10\right)
Combine -4x and 25x to get 21x.
-4x^{2}+4x+3-\left(-10x^{2}\right)-21x-10
To find the opposite of -10x^{2}+21x+10, find the opposite of each term.
-4x^{2}+4x+3+10x^{2}-21x-10
The opposite of -10x^{2} is 10x^{2}.
6x^{2}+4x+3-21x-10
Combine -4x^{2} and 10x^{2} to get 6x^{2}.
6x^{2}-17x+3-10
Combine 4x and -21x to get -17x.
6x^{2}-17x-7
Subtract 10 from 3 to get -7.
-4x^{2}-2x+6x+3-\left(2x-5\right)\left(-5x-2\right)
Apply the distributive property by multiplying each term of -2x+3 by each term of 2x+1.
-4x^{2}+4x+3-\left(2x-5\right)\left(-5x-2\right)
Combine -2x and 6x to get 4x.
-4x^{2}+4x+3-\left(-10x^{2}-4x+25x+10\right)
Apply the distributive property by multiplying each term of 2x-5 by each term of -5x-2.
-4x^{2}+4x+3-\left(-10x^{2}+21x+10\right)
Combine -4x and 25x to get 21x.
-4x^{2}+4x+3-\left(-10x^{2}\right)-21x-10
To find the opposite of -10x^{2}+21x+10, find the opposite of each term.
-4x^{2}+4x+3+10x^{2}-21x-10
The opposite of -10x^{2} is 10x^{2}.
6x^{2}+4x+3-21x-10
Combine -4x^{2} and 10x^{2} to get 6x^{2}.
6x^{2}-17x+3-10
Combine 4x and -21x to get -17x.
6x^{2}-17x-7
Subtract 10 from 3 to get -7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}