(-20-25.1x1+40.5x2 = 0
Solve for x_1
x_{1}=\frac{405x_{2}-200}{251}
Solve for x_2
x_{2}=\frac{251x_{1}}{405}+\frac{40}{81}
Share
Copied to clipboard
-25.1x_{1}+40.5x_{2}=20
Add 20 to both sides. Anything plus zero gives itself.
-25.1x_{1}=20-40.5x_{2}
Subtract 40.5x_{2} from both sides.
-25.1x_{1}=-\frac{81x_{2}}{2}+20
The equation is in standard form.
\frac{-25.1x_{1}}{-25.1}=\frac{-\frac{81x_{2}}{2}+20}{-25.1}
Divide both sides of the equation by -25.1, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{1}=\frac{-\frac{81x_{2}}{2}+20}{-25.1}
Dividing by -25.1 undoes the multiplication by -25.1.
x_{1}=\frac{405x_{2}-200}{251}
Divide 20-\frac{81x_{2}}{2} by -25.1 by multiplying 20-\frac{81x_{2}}{2} by the reciprocal of -25.1.
-25.1x_{1}+40.5x_{2}=20
Add 20 to both sides. Anything plus zero gives itself.
40.5x_{2}=20+25.1x_{1}
Add 25.1x_{1} to both sides.
40.5x_{2}=\frac{251x_{1}}{10}+20
The equation is in standard form.
\frac{40.5x_{2}}{40.5}=\frac{\frac{251x_{1}}{10}+20}{40.5}
Divide both sides of the equation by 40.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x_{2}=\frac{\frac{251x_{1}}{10}+20}{40.5}
Dividing by 40.5 undoes the multiplication by 40.5.
x_{2}=\frac{251x_{1}}{405}+\frac{40}{81}
Divide 20+\frac{251x_{1}}{10} by 40.5 by multiplying 20+\frac{251x_{1}}{10} by the reciprocal of 40.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}