Evaluate
-3.5
Factor
-3.5
Share
Copied to clipboard
-\frac{9}{4}-\frac{5}{8}-\frac{3}{4}-\left(-0.125\right)
Convert decimal number -2.25 to fraction -\frac{225}{100}. Reduce the fraction -\frac{225}{100} to lowest terms by extracting and canceling out 25.
-\frac{18}{8}-\frac{5}{8}-\frac{3}{4}-\left(-0.125\right)
Least common multiple of 4 and 8 is 8. Convert -\frac{9}{4} and \frac{5}{8} to fractions with denominator 8.
\frac{-18-5}{8}-\frac{3}{4}-\left(-0.125\right)
Since -\frac{18}{8} and \frac{5}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{23}{8}-\frac{3}{4}-\left(-0.125\right)
Subtract 5 from -18 to get -23.
-\frac{23}{8}-\frac{6}{8}-\left(-0.125\right)
Least common multiple of 8 and 4 is 8. Convert -\frac{23}{8} and \frac{3}{4} to fractions with denominator 8.
\frac{-23-6}{8}-\left(-0.125\right)
Since -\frac{23}{8} and \frac{6}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{8}-\left(-0.125\right)
Subtract 6 from -23 to get -29.
-\frac{29}{8}+0.125
The opposite of -0.125 is 0.125.
-\frac{29}{8}+\frac{1}{8}
Convert decimal number 0.125 to fraction \frac{125}{1000}. Reduce the fraction \frac{125}{1000} to lowest terms by extracting and canceling out 125.
\frac{-29+1}{8}
Since -\frac{29}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{-28}{8}
Add -29 and 1 to get -28.
-\frac{7}{2}
Reduce the fraction \frac{-28}{8} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}