Evaluate
-\frac{1226}{81}\approx -15.135802469
Factor
-\frac{1226}{81} = -15\frac{11}{81} = -15.135802469135802
Share
Copied to clipboard
\frac{-\frac{243+11}{9}}{9}-\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Multiply 27 and 9 to get 243.
\frac{-\frac{254}{9}}{9}-\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Add 243 and 11 to get 254.
\frac{-254}{9\times 9}-\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Express \frac{-\frac{254}{9}}{9} as a single fraction.
\frac{-254}{81}-\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Multiply 9 and 9 to get 81.
-\frac{254}{81}-\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Fraction \frac{-254}{81} can be rewritten as -\frac{254}{81} by extracting the negative sign.
-\frac{254}{81}-\left(\frac{3}{6}+\frac{4}{6}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{2}{3} to fractions with denominator 6.
-\frac{254}{81}-\left(\frac{3+4}{6}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Since \frac{3}{6} and \frac{4}{6} have the same denominator, add them by adding their numerators.
-\frac{254}{81}-\left(\frac{7}{6}-\frac{3}{4}-\frac{11}{12}\right)\left(-24\right)
Add 3 and 4 to get 7.
-\frac{254}{81}-\left(\frac{14}{12}-\frac{9}{12}-\frac{11}{12}\right)\left(-24\right)
Least common multiple of 6 and 4 is 12. Convert \frac{7}{6} and \frac{3}{4} to fractions with denominator 12.
-\frac{254}{81}-\left(\frac{14-9}{12}-\frac{11}{12}\right)\left(-24\right)
Since \frac{14}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{254}{81}-\left(\frac{5}{12}-\frac{11}{12}\right)\left(-24\right)
Subtract 9 from 14 to get 5.
-\frac{254}{81}-\frac{5-11}{12}\left(-24\right)
Since \frac{5}{12} and \frac{11}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{254}{81}-\frac{-6}{12}\left(-24\right)
Subtract 11 from 5 to get -6.
-\frac{254}{81}-\left(-\frac{1}{2}\left(-24\right)\right)
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
-\frac{254}{81}-\frac{-\left(-24\right)}{2}
Express -\frac{1}{2}\left(-24\right) as a single fraction.
-\frac{254}{81}-\frac{24}{2}
Multiply -1 and -24 to get 24.
-\frac{254}{81}-12
Divide 24 by 2 to get 12.
-\frac{254}{81}-\frac{972}{81}
Convert 12 to fraction \frac{972}{81}.
\frac{-254-972}{81}
Since -\frac{254}{81} and \frac{972}{81} have the same denominator, subtract them by subtracting their numerators.
-\frac{1226}{81}
Subtract 972 from -254 to get -1226.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}