Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Share

\left(-\sqrt{1+x}\right)\sqrt{1+x}-\left(-\sqrt{1+x}\right)x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Apply the distributive property by multiplying each term of -\sqrt{1+x}-x+1 by each term of \sqrt{1+x}-x+1.
\left(-\sqrt{1+x}\right)\sqrt{1+x}+\sqrt{1+x}x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Multiply -1 and -1 to get 1.
\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Combine \sqrt{1+x}x and -x\sqrt{1+x} to get 0.
\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1
Combine -x and -x to get -2x.
-\left(\sqrt{1+x}\right)^{2}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1
Multiply \sqrt{1+x} and \sqrt{1+x} to get \left(\sqrt{1+x}\right)^{2}.
-\left(\sqrt{1+x}\right)^{2}+x^{2}-2x+1
Combine -\sqrt{1+x} and \sqrt{1+x} to get 0.
-\left(1+x\right)+x^{2}-2x+1
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
-1-x+x^{2}-2x+1
To find the opposite of 1+x, find the opposite of each term.
-1-3x+x^{2}+1
Combine -x and -2x to get -3x.
-3x+x^{2}
Add -1 and 1 to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\left(-\sqrt{1+x}\right)x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Apply the distributive property by multiplying each term of -\sqrt{1+x}-x+1 by each term of \sqrt{1+x}-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}+\sqrt{1+x}x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Multiply -1 and -1 to get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Combine \sqrt{1+x}x and -x\sqrt{1+x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1)
Combine -x and -x to get -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(\sqrt{1+x}\right)^{2}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1)
Multiply \sqrt{1+x} and \sqrt{1+x} to get \left(\sqrt{1+x}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(\sqrt{1+x}\right)^{2}+x^{2}-2x+1)
Combine -\sqrt{1+x} and \sqrt{1+x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(1+x\right)+x^{2}-2x+1)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
\frac{\mathrm{d}}{\mathrm{d}x}(-1-x+x^{2}-2x+1)
To find the opposite of 1+x, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(-1-3x+x^{2}+1)
Combine -x and -2x to get -3x.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x+x^{2})
Add -1 and 1 to get 0.
-3x^{1-1}+2x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-3x^{0}+2x^{2-1}
Subtract 1 from 1.
-3x^{0}+2x^{1}
Subtract 1 from 2.
-3x^{0}+2x
For any term t, t^{1}=t.
-3+2x
For any term t except 0, t^{0}=1.