Evaluate
x\left(x-3\right)
Differentiate w.r.t. x
2x-3
Graph
Share
Copied to clipboard
\left(-\sqrt{1+x}\right)\sqrt{1+x}-\left(-\sqrt{1+x}\right)x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Apply the distributive property by multiplying each term of -\sqrt{1+x}-x+1 by each term of \sqrt{1+x}-x+1.
\left(-\sqrt{1+x}\right)\sqrt{1+x}+\sqrt{1+x}x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Multiply -1 and -1 to get 1.
\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1
Combine \sqrt{1+x}x and -x\sqrt{1+x} to get 0.
\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1
Combine -x and -x to get -2x.
-\left(\sqrt{1+x}\right)^{2}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1
Multiply \sqrt{1+x} and \sqrt{1+x} to get \left(\sqrt{1+x}\right)^{2}.
-\left(\sqrt{1+x}\right)^{2}+x^{2}-2x+1
Combine -\sqrt{1+x} and \sqrt{1+x} to get 0.
-\left(1+x\right)+x^{2}-2x+1
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
-1-x+x^{2}-2x+1
To find the opposite of 1+x, find the opposite of each term.
-1-3x+x^{2}+1
Combine -x and -2x to get -3x.
-3x+x^{2}
Add -1 and 1 to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\left(-\sqrt{1+x}\right)x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Apply the distributive property by multiplying each term of -\sqrt{1+x}-x+1 by each term of \sqrt{1+x}-x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}+\sqrt{1+x}x-\sqrt{1+x}-x\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Multiply -1 and -1 to get 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-x+\sqrt{1+x}-x+1)
Combine \sqrt{1+x}x and -x\sqrt{1+x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(-\sqrt{1+x}\right)\sqrt{1+x}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1)
Combine -x and -x to get -2x.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(\sqrt{1+x}\right)^{2}-\sqrt{1+x}+x^{2}-2x+\sqrt{1+x}+1)
Multiply \sqrt{1+x} and \sqrt{1+x} to get \left(\sqrt{1+x}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(\sqrt{1+x}\right)^{2}+x^{2}-2x+1)
Combine -\sqrt{1+x} and \sqrt{1+x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(-\left(1+x\right)+x^{2}-2x+1)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
\frac{\mathrm{d}}{\mathrm{d}x}(-1-x+x^{2}-2x+1)
To find the opposite of 1+x, find the opposite of each term.
\frac{\mathrm{d}}{\mathrm{d}x}(-1-3x+x^{2}+1)
Combine -x and -2x to get -3x.
\frac{\mathrm{d}}{\mathrm{d}x}(-3x+x^{2})
Add -1 and 1 to get 0.
-3x^{1-1}+2x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-3x^{0}+2x^{2-1}
Subtract 1 from 1.
-3x^{0}+2x^{1}
Subtract 1 from 2.
-3x^{0}+2x
For any term t, t^{1}=t.
-3+2x
For any term t except 0, t^{0}=1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}