Evaluate
-\frac{2}{15}\approx -0.133333333
Factor
-\frac{2}{15} = -0.13333333333333333
Share
Copied to clipboard
\frac{-\frac{1}{5}\left(\frac{3}{2}+\frac{2}{2}\right)+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Convert 1 to fraction \frac{2}{2}.
\frac{-\frac{1}{5}\times \frac{3+2}{2}+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Since \frac{3}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{5}\times \frac{5}{2}+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Add 3 and 2 to get 5.
\frac{\frac{-5}{5\times 2}+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Multiply -\frac{1}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-1}{2}+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Cancel out 5 in both numerator and denominator.
\frac{-\frac{1}{2}+\frac{3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
\frac{\frac{-1+3}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Since -\frac{1}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{\frac{2}{2}}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Add -1 and 3 to get 2.
\frac{1}{\frac{5}{4}}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Divide 2 by 2 to get 1.
1\times \frac{4}{5}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Divide 1 by \frac{5}{4} by multiplying 1 by the reciprocal of \frac{5}{4}.
\frac{4}{5}+\frac{\left(3-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Multiply 1 and \frac{4}{5} to get \frac{4}{5}.
\frac{4}{5}+\frac{\left(\frac{9}{3}-\frac{2}{3}\right)\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Convert 3 to fraction \frac{9}{3}.
\frac{4}{5}+\frac{\frac{9-2}{3}\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Since \frac{9}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{5}+\frac{\frac{7}{3}\left(-\frac{1}{5}-\frac{2}{7}\right)}{\frac{4}{3}}-\frac{1}{12}
Subtract 2 from 9 to get 7.
\frac{4}{5}+\frac{\frac{7}{3}\left(-\frac{7}{35}-\frac{10}{35}\right)}{\frac{4}{3}}-\frac{1}{12}
Least common multiple of 5 and 7 is 35. Convert -\frac{1}{5} and \frac{2}{7} to fractions with denominator 35.
\frac{4}{5}+\frac{\frac{7}{3}\times \frac{-7-10}{35}}{\frac{4}{3}}-\frac{1}{12}
Since -\frac{7}{35} and \frac{10}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{5}+\frac{\frac{7}{3}\left(-\frac{17}{35}\right)}{\frac{4}{3}}-\frac{1}{12}
Subtract 10 from -7 to get -17.
\frac{4}{5}+\frac{\frac{7\left(-17\right)}{3\times 35}}{\frac{4}{3}}-\frac{1}{12}
Multiply \frac{7}{3} times -\frac{17}{35} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}+\frac{\frac{-119}{105}}{\frac{4}{3}}-\frac{1}{12}
Do the multiplications in the fraction \frac{7\left(-17\right)}{3\times 35}.
\frac{4}{5}+\frac{-\frac{17}{15}}{\frac{4}{3}}-\frac{1}{12}
Reduce the fraction \frac{-119}{105} to lowest terms by extracting and canceling out 7.
\frac{4}{5}-\frac{17}{15}\times \frac{3}{4}-\frac{1}{12}
Divide -\frac{17}{15} by \frac{4}{3} by multiplying -\frac{17}{15} by the reciprocal of \frac{4}{3}.
\frac{4}{5}+\frac{-17\times 3}{15\times 4}-\frac{1}{12}
Multiply -\frac{17}{15} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{5}+\frac{-51}{60}-\frac{1}{12}
Do the multiplications in the fraction \frac{-17\times 3}{15\times 4}.
\frac{4}{5}-\frac{17}{20}-\frac{1}{12}
Reduce the fraction \frac{-51}{60} to lowest terms by extracting and canceling out 3.
\frac{16}{20}-\frac{17}{20}-\frac{1}{12}
Least common multiple of 5 and 20 is 20. Convert \frac{4}{5} and \frac{17}{20} to fractions with denominator 20.
\frac{16-17}{20}-\frac{1}{12}
Since \frac{16}{20} and \frac{17}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{20}-\frac{1}{12}
Subtract 17 from 16 to get -1.
-\frac{3}{60}-\frac{5}{60}
Least common multiple of 20 and 12 is 60. Convert -\frac{1}{20} and \frac{1}{12} to fractions with denominator 60.
\frac{-3-5}{60}
Since -\frac{3}{60} and \frac{5}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{-8}{60}
Subtract 5 from -3 to get -8.
-\frac{2}{15}
Reduce the fraction \frac{-8}{60} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}