Evaluate
-\frac{35}{6}\approx -5.833333333
Factor
-\frac{35}{6} = -5\frac{5}{6} = -5.833333333333333
Share
Copied to clipboard
\frac{-\frac{1}{18}}{\frac{5}{30}-\frac{3}{30}+\frac{2}{3}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 6 and 10 is 30. Convert \frac{1}{6} and \frac{1}{10} to fractions with denominator 30.
\frac{-\frac{1}{18}}{\frac{5-3}{30}+\frac{2}{3}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{5}{30} and \frac{3}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{18}}{\frac{2}{30}+\frac{2}{3}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Subtract 3 from 5 to get 2.
\frac{-\frac{1}{18}}{\frac{1}{15}+\frac{2}{3}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{-\frac{1}{18}}{\frac{1}{15}+\frac{10}{15}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 15 and 3 is 15. Convert \frac{1}{15} and \frac{2}{3} to fractions with denominator 15.
\frac{-\frac{1}{18}}{\frac{1+10}{15}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{1}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{-\frac{1}{18}}{\frac{11}{15}-\frac{2}{5}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Add 1 and 10 to get 11.
\frac{-\frac{1}{18}}{\frac{11}{15}-\frac{6}{15}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 15 and 5 is 15. Convert \frac{11}{15} and \frac{2}{5} to fractions with denominator 15.
\frac{-\frac{1}{18}}{\frac{11-6}{15}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{11}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{1}{18}}{\frac{5}{15}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Subtract 6 from 11 to get 5.
\frac{-\frac{1}{18}}{\frac{1}{3}}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
-\frac{1}{18}\times 3+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Divide -\frac{1}{18} by \frac{1}{3} by multiplying -\frac{1}{18} by the reciprocal of \frac{1}{3}.
\frac{-3}{18}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Express -\frac{1}{18}\times 3 as a single fraction.
-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Reduce the fraction \frac{-3}{18} to lowest terms by extracting and canceling out 3.
-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Add -\frac{1}{6} and \frac{1}{6} to get 0.
-\frac{3}{30}+\frac{20}{30}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 10 and 3 is 30. Convert -\frac{1}{10} and \frac{2}{3} to fractions with denominator 30.
\frac{-3+20}{30}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since -\frac{3}{30} and \frac{20}{30} have the same denominator, add them by adding their numerators.
\frac{17}{30}-\frac{2}{5}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Add -3 and 20 to get 17.
\frac{17}{30}-\frac{12}{30}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 30 and 5 is 30. Convert \frac{17}{30} and \frac{2}{5} to fractions with denominator 30.
\frac{17-12}{30}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{17}{30} and \frac{12}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{30}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Subtract 12 from 17 to get 5.
\frac{1}{6}+\frac{\frac{1}{6}-\frac{1}{10}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Reduce the fraction \frac{5}{30} to lowest terms by extracting and canceling out 5.
\frac{1}{6}+\frac{\frac{5}{30}-\frac{3}{30}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 6 and 10 is 30. Convert \frac{1}{6} and \frac{1}{10} to fractions with denominator 30.
\frac{1}{6}+\frac{\frac{5-3}{30}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{5}{30} and \frac{3}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}+\frac{\frac{2}{30}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Subtract 3 from 5 to get 2.
\frac{1}{6}+\frac{\frac{1}{15}+\frac{2}{3}-\frac{2}{5}}{-\frac{1}{18}}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{1}{6}+\frac{\frac{1}{15}+\frac{10}{15}-\frac{2}{5}}{-\frac{1}{18}}
Least common multiple of 15 and 3 is 15. Convert \frac{1}{15} and \frac{2}{3} to fractions with denominator 15.
\frac{1}{6}+\frac{\frac{1+10}{15}-\frac{2}{5}}{-\frac{1}{18}}
Since \frac{1}{15} and \frac{10}{15} have the same denominator, add them by adding their numerators.
\frac{1}{6}+\frac{\frac{11}{15}-\frac{2}{5}}{-\frac{1}{18}}
Add 1 and 10 to get 11.
\frac{1}{6}+\frac{\frac{11}{15}-\frac{6}{15}}{-\frac{1}{18}}
Least common multiple of 15 and 5 is 15. Convert \frac{11}{15} and \frac{2}{5} to fractions with denominator 15.
\frac{1}{6}+\frac{\frac{11-6}{15}}{-\frac{1}{18}}
Since \frac{11}{15} and \frac{6}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}+\frac{\frac{5}{15}}{-\frac{1}{18}}
Subtract 6 from 11 to get 5.
\frac{1}{6}+\frac{\frac{1}{3}}{-\frac{1}{18}}
Reduce the fraction \frac{5}{15} to lowest terms by extracting and canceling out 5.
\frac{1}{6}+\frac{1}{3}\left(-18\right)
Divide \frac{1}{3} by -\frac{1}{18} by multiplying \frac{1}{3} by the reciprocal of -\frac{1}{18}.
\frac{1}{6}+\frac{-18}{3}
Multiply \frac{1}{3} and -18 to get \frac{-18}{3}.
\frac{1}{6}-6
Divide -18 by 3 to get -6.
\frac{1}{6}-\frac{36}{6}
Convert 6 to fraction \frac{36}{6}.
\frac{1-36}{6}
Since \frac{1}{6} and \frac{36}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{35}{6}
Subtract 36 from 1 to get -35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}