((5+3.6+3.6+3.8+4+4.5) \times 3+4.5-3.6+3.6+1.9 \times 13.5) \div (22+13.5=
Evaluate
\frac{2073}{710}\approx 2.91971831
Factor
\frac{3 \cdot 691}{2 \cdot 5 \cdot 71} = 2\frac{653}{710} = 2.919718309859155
Quiz
5 problems similar to:
((5+3.6+3.6+3.8+4+4.5) \times 3+4.5-3.6+3.6+1.9 \times 13.5) \div (22+13.5=
Share
Copied to clipboard
\frac{\left(8.6+3.6+3.8+4+4.5\right)\times 3+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 5 and 3.6 to get 8.6.
\frac{\left(12.2+3.8+4+4.5\right)\times 3+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 8.6 and 3.6 to get 12.2.
\frac{\left(16+4+4.5\right)\times 3+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 12.2 and 3.8 to get 16.
\frac{\left(20+4.5\right)\times 3+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 16 and 4 to get 20.
\frac{24.5\times 3+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 20 and 4.5 to get 24.5.
\frac{73.5+4.5-3.6+3.6+1.9\times 13.5}{22+13.5}
Multiply 24.5 and 3 to get 73.5.
\frac{78-3.6+3.6+1.9\times 13.5}{22+13.5}
Add 73.5 and 4.5 to get 78.
\frac{74.4+3.6+1.9\times 13.5}{22+13.5}
Subtract 3.6 from 78 to get 74.4.
\frac{78+1.9\times 13.5}{22+13.5}
Add 74.4 and 3.6 to get 78.
\frac{78+25.65}{22+13.5}
Multiply 1.9 and 13.5 to get 25.65.
\frac{103.65}{22+13.5}
Add 78 and 25.65 to get 103.65.
\frac{103.65}{35.5}
Add 22 and 13.5 to get 35.5.
\frac{10365}{3550}
Expand \frac{103.65}{35.5} by multiplying both numerator and the denominator by 100.
\frac{2073}{710}
Reduce the fraction \frac{10365}{3550} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}