Solve for x
x = \frac{5 \sqrt{5509} + 35}{13} \approx 31.239476175
x=\frac{35-5\sqrt{5509}}{13}\approx -25.854860791
Graph
Share
Copied to clipboard
\left(\left(3x-50\right)\left(2x-40\right)+\left(2x-40\right)\times 40\right)\times 30+2x^{2}\times 3\times 100=642000
Multiply x and x to get x^{2}.
\left(6x^{2}-220x+2000+\left(2x-40\right)\times 40\right)\times 30+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 3x-50 by 2x-40 and combine like terms.
\left(6x^{2}-220x+2000+80x-1600\right)\times 30+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 2x-40 by 40.
\left(6x^{2}-140x+2000-1600\right)\times 30+2x^{2}\times 3\times 100=642000
Combine -220x and 80x to get -140x.
\left(6x^{2}-140x+400\right)\times 30+2x^{2}\times 3\times 100=642000
Subtract 1600 from 2000 to get 400.
180x^{2}-4200x+12000+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 6x^{2}-140x+400 by 30.
180x^{2}-4200x+12000+6x^{2}\times 100=642000
Multiply 2 and 3 to get 6.
180x^{2}-4200x+12000+600x^{2}=642000
Multiply 6 and 100 to get 600.
780x^{2}-4200x+12000=642000
Combine 180x^{2} and 600x^{2} to get 780x^{2}.
780x^{2}-4200x+12000-642000=0
Subtract 642000 from both sides.
780x^{2}-4200x-630000=0
Subtract 642000 from 12000 to get -630000.
x=\frac{-\left(-4200\right)±\sqrt{\left(-4200\right)^{2}-4\times 780\left(-630000\right)}}{2\times 780}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 780 for a, -4200 for b, and -630000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4200\right)±\sqrt{17640000-4\times 780\left(-630000\right)}}{2\times 780}
Square -4200.
x=\frac{-\left(-4200\right)±\sqrt{17640000-3120\left(-630000\right)}}{2\times 780}
Multiply -4 times 780.
x=\frac{-\left(-4200\right)±\sqrt{17640000+1965600000}}{2\times 780}
Multiply -3120 times -630000.
x=\frac{-\left(-4200\right)±\sqrt{1983240000}}{2\times 780}
Add 17640000 to 1965600000.
x=\frac{-\left(-4200\right)±600\sqrt{5509}}{2\times 780}
Take the square root of 1983240000.
x=\frac{4200±600\sqrt{5509}}{2\times 780}
The opposite of -4200 is 4200.
x=\frac{4200±600\sqrt{5509}}{1560}
Multiply 2 times 780.
x=\frac{600\sqrt{5509}+4200}{1560}
Now solve the equation x=\frac{4200±600\sqrt{5509}}{1560} when ± is plus. Add 4200 to 600\sqrt{5509}.
x=\frac{5\sqrt{5509}+35}{13}
Divide 4200+600\sqrt{5509} by 1560.
x=\frac{4200-600\sqrt{5509}}{1560}
Now solve the equation x=\frac{4200±600\sqrt{5509}}{1560} when ± is minus. Subtract 600\sqrt{5509} from 4200.
x=\frac{35-5\sqrt{5509}}{13}
Divide 4200-600\sqrt{5509} by 1560.
x=\frac{5\sqrt{5509}+35}{13} x=\frac{35-5\sqrt{5509}}{13}
The equation is now solved.
\left(\left(3x-50\right)\left(2x-40\right)+\left(2x-40\right)\times 40\right)\times 30+2x^{2}\times 3\times 100=642000
Multiply x and x to get x^{2}.
\left(6x^{2}-220x+2000+\left(2x-40\right)\times 40\right)\times 30+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 3x-50 by 2x-40 and combine like terms.
\left(6x^{2}-220x+2000+80x-1600\right)\times 30+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 2x-40 by 40.
\left(6x^{2}-140x+2000-1600\right)\times 30+2x^{2}\times 3\times 100=642000
Combine -220x and 80x to get -140x.
\left(6x^{2}-140x+400\right)\times 30+2x^{2}\times 3\times 100=642000
Subtract 1600 from 2000 to get 400.
180x^{2}-4200x+12000+2x^{2}\times 3\times 100=642000
Use the distributive property to multiply 6x^{2}-140x+400 by 30.
180x^{2}-4200x+12000+6x^{2}\times 100=642000
Multiply 2 and 3 to get 6.
180x^{2}-4200x+12000+600x^{2}=642000
Multiply 6 and 100 to get 600.
780x^{2}-4200x+12000=642000
Combine 180x^{2} and 600x^{2} to get 780x^{2}.
780x^{2}-4200x=642000-12000
Subtract 12000 from both sides.
780x^{2}-4200x=630000
Subtract 12000 from 642000 to get 630000.
\frac{780x^{2}-4200x}{780}=\frac{630000}{780}
Divide both sides by 780.
x^{2}+\left(-\frac{4200}{780}\right)x=\frac{630000}{780}
Dividing by 780 undoes the multiplication by 780.
x^{2}-\frac{70}{13}x=\frac{630000}{780}
Reduce the fraction \frac{-4200}{780} to lowest terms by extracting and canceling out 60.
x^{2}-\frac{70}{13}x=\frac{10500}{13}
Reduce the fraction \frac{630000}{780} to lowest terms by extracting and canceling out 60.
x^{2}-\frac{70}{13}x+\left(-\frac{35}{13}\right)^{2}=\frac{10500}{13}+\left(-\frac{35}{13}\right)^{2}
Divide -\frac{70}{13}, the coefficient of the x term, by 2 to get -\frac{35}{13}. Then add the square of -\frac{35}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{70}{13}x+\frac{1225}{169}=\frac{10500}{13}+\frac{1225}{169}
Square -\frac{35}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{70}{13}x+\frac{1225}{169}=\frac{137725}{169}
Add \frac{10500}{13} to \frac{1225}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{13}\right)^{2}=\frac{137725}{169}
Factor x^{2}-\frac{70}{13}x+\frac{1225}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{13}\right)^{2}}=\sqrt{\frac{137725}{169}}
Take the square root of both sides of the equation.
x-\frac{35}{13}=\frac{5\sqrt{5509}}{13} x-\frac{35}{13}=-\frac{5\sqrt{5509}}{13}
Simplify.
x=\frac{5\sqrt{5509}+35}{13} x=\frac{35-5\sqrt{5509}}{13}
Add \frac{35}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}