Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\frac{-10}{\sqrt{8-11}-3}
Add -11 and 1 to get -10.
\frac{-10}{\sqrt{-3}-3}
Subtract 11 from 8 to get -3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right)}
Rationalize the denominator of \frac{-10}{\sqrt{-3}-3} by multiplying numerator and denominator by \sqrt{-3}+3.
\frac{-10\left(\sqrt{-3}+3\right)}{\left(\sqrt{-3}\right)^{2}-3^{2}}
Consider \left(\sqrt{-3}-3\right)\left(\sqrt{-3}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-10\left(\sqrt{-3}+3\right)}{-3-9}
Square \sqrt{-3}. Square 3.
\frac{-10\left(\sqrt{-3}+3\right)}{-12}
Subtract 9 from -3 to get -12.
\frac{5}{6}\left(\sqrt{-3}+3\right)
Divide -10\left(\sqrt{-3}+3\right) by -12 to get \frac{5}{6}\left(\sqrt{-3}+3\right).
\frac{5}{6}\sqrt{-3}+\frac{5}{6}\times 3
Use the distributive property to multiply \frac{5}{6} by \sqrt{-3}+3.
\frac{5}{6}\sqrt{-3}+\frac{5\times 3}{6}
Express \frac{5}{6}\times 3 as a single fraction.
\frac{5}{6}\sqrt{-3}+\frac{15}{6}
Multiply 5 and 3 to get 15.
\frac{5}{6}\sqrt{-3}+\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}