Solve for x
x = \frac{1501}{15} = 100\frac{1}{15} \approx 100.066666667
Graph
Share
Copied to clipboard
7\left(\frac{93+87+5x}{7}\times 0.9+\frac{100+90+5x}{7}\times 0.1\right)\times 0.6+0.7\times 95+2.1\times 97=679
Multiply both sides of the equation by 7.
7\left(\frac{180+5x}{7}\times 0.9+\frac{100+90+5x}{7}\times 0.1\right)\times 0.6+0.7\times 95+2.1\times 97=679
Add 93 and 87 to get 180.
7\left(\frac{180+5x}{7}\times 0.9+\frac{190+5x}{7}\times 0.1\right)\times 0.6+0.7\times 95+2.1\times 97=679
Add 100 and 90 to get 190.
4.2\left(\frac{180+5x}{7}\times 0.9+\frac{190+5x}{7}\times 0.1\right)+0.7\times 95+2.1\times 97=679
Multiply 7 and 0.6 to get 4.2.
4.2\times \frac{180+5x}{7}\times 0.9+4.2\times \frac{190+5x}{7}\times 0.1+0.7\times 95+2.1\times 97=679
Use the distributive property to multiply 4.2 by \frac{180+5x}{7}\times 0.9+\frac{190+5x}{7}\times 0.1.
3.78\times \frac{180+5x}{7}+4.2\times \frac{190+5x}{7}\times 0.1+0.7\times 95+2.1\times 97=679
Multiply 4.2 and 0.9 to get 3.78.
3.78\times \frac{180+5x}{7}+0.42\times \frac{190+5x}{7}+0.7\times 95+2.1\times 97=679
Multiply 4.2 and 0.1 to get 0.42.
3.78\times \frac{180+5x}{7}+0.42\times \frac{190+5x}{7}+66.5+2.1\times 97=679
Multiply 0.7 and 95 to get 66.5.
3.78\times \frac{180+5x}{7}+0.42\times \frac{190+5x}{7}+66.5+203.7=679
Multiply 2.1 and 97 to get 203.7.
3.78\times \frac{180+5x}{7}+0.42\times \frac{190+5x}{7}+270.2=679
Add 66.5 and 203.7 to get 270.2.
3.78\left(\frac{180}{7}+\frac{5}{7}x\right)+0.42\times \frac{190+5x}{7}+270.2=679
Divide each term of 180+5x by 7 to get \frac{180}{7}+\frac{5}{7}x.
3.78\times \frac{180}{7}+3.78\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Use the distributive property to multiply 3.78 by \frac{180}{7}+\frac{5}{7}x.
\frac{189}{50}\times \frac{180}{7}+3.78\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Convert decimal number 3.78 to fraction \frac{378}{100}. Reduce the fraction \frac{378}{100} to lowest terms by extracting and canceling out 2.
\frac{189\times 180}{50\times 7}+3.78\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Multiply \frac{189}{50} times \frac{180}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{34020}{350}+3.78\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Do the multiplications in the fraction \frac{189\times 180}{50\times 7}.
\frac{486}{5}+3.78\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Reduce the fraction \frac{34020}{350} to lowest terms by extracting and canceling out 70.
\frac{486}{5}+\frac{189}{50}\times \frac{5}{7}x+0.42\times \frac{190+5x}{7}+270.2=679
Convert decimal number 3.78 to fraction \frac{378}{100}. Reduce the fraction \frac{378}{100} to lowest terms by extracting and canceling out 2.
\frac{486}{5}+\frac{189\times 5}{50\times 7}x+0.42\times \frac{190+5x}{7}+270.2=679
Multiply \frac{189}{50} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{486}{5}+\frac{945}{350}x+0.42\times \frac{190+5x}{7}+270.2=679
Do the multiplications in the fraction \frac{189\times 5}{50\times 7}.
\frac{486}{5}+\frac{27}{10}x+0.42\times \frac{190+5x}{7}+270.2=679
Reduce the fraction \frac{945}{350} to lowest terms by extracting and canceling out 35.
\frac{486}{5}+\frac{27}{10}x+0.42\left(\frac{190}{7}+\frac{5}{7}x\right)+270.2=679
Divide each term of 190+5x by 7 to get \frac{190}{7}+\frac{5}{7}x.
\frac{486}{5}+\frac{27}{10}x+0.42\times \frac{190}{7}+0.42\times \frac{5}{7}x+270.2=679
Use the distributive property to multiply 0.42 by \frac{190}{7}+\frac{5}{7}x.
\frac{486}{5}+\frac{27}{10}x+\frac{21}{50}\times \frac{190}{7}+0.42\times \frac{5}{7}x+270.2=679
Convert decimal number 0.42 to fraction \frac{42}{100}. Reduce the fraction \frac{42}{100} to lowest terms by extracting and canceling out 2.
\frac{486}{5}+\frac{27}{10}x+\frac{21\times 190}{50\times 7}+0.42\times \frac{5}{7}x+270.2=679
Multiply \frac{21}{50} times \frac{190}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{486}{5}+\frac{27}{10}x+\frac{3990}{350}+0.42\times \frac{5}{7}x+270.2=679
Do the multiplications in the fraction \frac{21\times 190}{50\times 7}.
\frac{486}{5}+\frac{27}{10}x+\frac{57}{5}+0.42\times \frac{5}{7}x+270.2=679
Reduce the fraction \frac{3990}{350} to lowest terms by extracting and canceling out 70.
\frac{486}{5}+\frac{27}{10}x+\frac{57}{5}+\frac{21}{50}\times \frac{5}{7}x+270.2=679
Convert decimal number 0.42 to fraction \frac{42}{100}. Reduce the fraction \frac{42}{100} to lowest terms by extracting and canceling out 2.
\frac{486}{5}+\frac{27}{10}x+\frac{57}{5}+\frac{21\times 5}{50\times 7}x+270.2=679
Multiply \frac{21}{50} times \frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{486}{5}+\frac{27}{10}x+\frac{57}{5}+\frac{105}{350}x+270.2=679
Do the multiplications in the fraction \frac{21\times 5}{50\times 7}.
\frac{486}{5}+\frac{27}{10}x+\frac{57}{5}+\frac{3}{10}x+270.2=679
Reduce the fraction \frac{105}{350} to lowest terms by extracting and canceling out 35.
\frac{486+57}{5}+\frac{27}{10}x+\frac{3}{10}x+270.2=679
Since \frac{486}{5} and \frac{57}{5} have the same denominator, add them by adding their numerators.
\frac{543}{5}+\frac{27}{10}x+\frac{3}{10}x+270.2=679
Add 486 and 57 to get 543.
\frac{543}{5}+3x+270.2=679
Combine \frac{27}{10}x and \frac{3}{10}x to get 3x.
\frac{543}{5}+3x+\frac{1351}{5}=679
Convert decimal number 270.2 to fraction \frac{2702}{10}. Reduce the fraction \frac{2702}{10} to lowest terms by extracting and canceling out 2.
\frac{543+1351}{5}+3x=679
Since \frac{543}{5} and \frac{1351}{5} have the same denominator, add them by adding their numerators.
\frac{1894}{5}+3x=679
Add 543 and 1351 to get 1894.
3x=679-\frac{1894}{5}
Subtract \frac{1894}{5} from both sides.
3x=\frac{3395}{5}-\frac{1894}{5}
Convert 679 to fraction \frac{3395}{5}.
3x=\frac{3395-1894}{5}
Since \frac{3395}{5} and \frac{1894}{5} have the same denominator, subtract them by subtracting their numerators.
3x=\frac{1501}{5}
Subtract 1894 from 3395 to get 1501.
x=\frac{\frac{1501}{5}}{3}
Divide both sides by 3.
x=\frac{1501}{5\times 3}
Express \frac{\frac{1501}{5}}{3} as a single fraction.
x=\frac{1501}{15}
Multiply 5 and 3 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}