Evaluate
\frac{1145}{288}\approx 3.975694444
Factor
\frac{5 \cdot 229}{2 ^ {5} \cdot 3 ^ {2}} = 3\frac{281}{288} = 3.9756944444444446
Share
Copied to clipboard
\left(\frac{3}{2}+\left(\frac{1}{4}+1-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+\frac{1}{1}+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+\frac{1}{1}}
Divide 1 by 1 to get 1.
\left(\frac{3}{2}+\left(\frac{1}{4}+1-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+\frac{1}{1}}
Divide 1 by 1 to get 1.
\left(\frac{3}{2}+\left(\frac{1}{4}+1-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Divide 1 by 1 to get 1.
\left(\frac{3}{2}+\left(\frac{1}{4}+\frac{4}{4}-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Convert 1 to fraction \frac{4}{4}.
\left(\frac{3}{2}+\left(\frac{1+4}{4}-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{1}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\left(\frac{3}{2}+\left(\frac{5}{4}-\frac{1}{3}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Add 1 and 4 to get 5.
\left(\frac{3}{2}+\left(\frac{15}{12}-\frac{4}{12}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{1}{3} to fractions with denominator 12.
\left(\frac{3}{2}+\left(\frac{15-4}{12}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{15}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{3}{2}+\left(\frac{11}{12}-\frac{1}{6}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Subtract 4 from 15 to get 11.
\left(\frac{3}{2}+\left(\frac{11}{12}-\frac{2}{12}\right)\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Least common multiple of 12 and 6 is 12. Convert \frac{11}{12} and \frac{1}{6} to fractions with denominator 12.
\left(\frac{3}{2}+\frac{11-2}{12}\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{11}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{3}{2}+\frac{9}{12}\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Subtract 2 from 11 to get 9.
\left(\frac{3}{2}+\frac{3}{4}\left(\frac{11}{3}-\frac{6}{3}\right)+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Reduce the fraction \frac{9}{12} to lowest terms by extracting and canceling out 3.
\left(\frac{3}{2}+\frac{3}{4}\times \frac{11-6}{3}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{11}{3} and \frac{6}{3} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{3}{2}+\frac{3}{4}\times \frac{5}{3}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Subtract 6 from 11 to get 5.
\left(\frac{3}{2}+\frac{3\times 5}{4\times 3}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Multiply \frac{3}{4} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{3}{2}+\frac{5}{4}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Cancel out 3 in both numerator and denominator.
\left(\frac{6}{4}+\frac{5}{4}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{5}{4} to fractions with denominator 4.
\left(\frac{6+5}{4}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{6}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\left(\frac{11}{4}+1+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Add 6 and 5 to get 11.
\left(\frac{11}{4}+\frac{4}{4}+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Convert 1 to fraction \frac{4}{4}.
\left(\frac{11+4}{4}+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{11}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\left(\frac{15}{4}+\frac{2}{5}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Add 11 and 4 to get 15.
\left(\frac{75}{20}+\frac{8}{20}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Least common multiple of 4 and 5 is 20. Convert \frac{15}{4} and \frac{2}{5} to fractions with denominator 20.
\left(\frac{75+8}{20}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{75}{20} and \frac{8}{20} have the same denominator, add them by adding their numerators.
\left(\frac{83}{20}-\frac{1}{3}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Add 75 and 8 to get 83.
\left(\frac{249}{60}-\frac{20}{60}\right)\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Least common multiple of 20 and 3 is 60. Convert \frac{83}{20} and \frac{1}{3} to fractions with denominator 60.
\frac{249-20}{60}\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Since \frac{249}{60} and \frac{20}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{229}{60}\times \frac{\frac{2}{1}-\frac{1}{3}}{\frac{3}{5}+1}
Subtract 20 from 249 to get 229.
\frac{229}{60}\times \frac{2-\frac{1}{3}}{\frac{3}{5}+1}
Anything divided by one gives itself.
\frac{229}{60}\times \frac{\frac{6}{3}-\frac{1}{3}}{\frac{3}{5}+1}
Convert 2 to fraction \frac{6}{3}.
\frac{229}{60}\times \frac{\frac{6-1}{3}}{\frac{3}{5}+1}
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{229}{60}\times \frac{\frac{5}{3}}{\frac{3}{5}+1}
Subtract 1 from 6 to get 5.
\frac{229}{60}\times \frac{\frac{5}{3}}{\frac{3}{5}+\frac{5}{5}}
Convert 1 to fraction \frac{5}{5}.
\frac{229}{60}\times \frac{\frac{5}{3}}{\frac{3+5}{5}}
Since \frac{3}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
\frac{229}{60}\times \frac{\frac{5}{3}}{\frac{8}{5}}
Add 3 and 5 to get 8.
\frac{229}{60}\times \frac{5}{3}\times \frac{5}{8}
Divide \frac{5}{3} by \frac{8}{5} by multiplying \frac{5}{3} by the reciprocal of \frac{8}{5}.
\frac{229}{60}\times \frac{5\times 5}{3\times 8}
Multiply \frac{5}{3} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
\frac{229}{60}\times \frac{25}{24}
Do the multiplications in the fraction \frac{5\times 5}{3\times 8}.
\frac{229\times 25}{60\times 24}
Multiply \frac{229}{60} times \frac{25}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{5725}{1440}
Do the multiplications in the fraction \frac{229\times 25}{60\times 24}.
\frac{1145}{288}
Reduce the fraction \frac{5725}{1440} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}