Evaluate
\frac{150}{7}\approx 21.428571429
Factor
\frac{2 \cdot 3 \cdot 5 ^ {2}}{7} = 21\frac{3}{7} = 21.428571428571427
Share
Copied to clipboard
\frac{\left(\frac{5}{3}-\frac{3}{7}\right)\times \frac{9}{4}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Divide \frac{\left(\frac{5}{3}-\frac{3}{7}\right)\times \frac{9}{4}}{\frac{1}{3}+\frac{3}{5}-\frac{1}{2}} by \frac{3}{10} by multiplying \frac{\left(\frac{5}{3}-\frac{3}{7}\right)\times \frac{9}{4}}{\frac{1}{3}+\frac{3}{5}-\frac{1}{2}} by the reciprocal of \frac{3}{10}.
\frac{\left(\frac{35}{21}-\frac{9}{21}\right)\times \frac{9}{4}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Least common multiple of 3 and 7 is 21. Convert \frac{5}{3} and \frac{3}{7} to fractions with denominator 21.
\frac{\frac{35-9}{21}\times \frac{9}{4}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Since \frac{35}{21} and \frac{9}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{26}{21}\times \frac{9}{4}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Subtract 9 from 35 to get 26.
\frac{\frac{26\times 9}{21\times 4}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Multiply \frac{26}{21} times \frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{234}{84}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Do the multiplications in the fraction \frac{26\times 9}{21\times 4}.
\frac{\frac{39}{14}\times 10}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Reduce the fraction \frac{234}{84} to lowest terms by extracting and canceling out 6.
\frac{\frac{39\times 10}{14}}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Express \frac{39}{14}\times 10 as a single fraction.
\frac{\frac{390}{14}}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Multiply 39 and 10 to get 390.
\frac{\frac{195}{7}}{\left(\frac{1}{3}+\frac{3}{5}-\frac{1}{2}\right)\times 3}
Reduce the fraction \frac{390}{14} to lowest terms by extracting and canceling out 2.
\frac{\frac{195}{7}}{\left(\frac{5}{15}+\frac{9}{15}-\frac{1}{2}\right)\times 3}
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{3}{5} to fractions with denominator 15.
\frac{\frac{195}{7}}{\left(\frac{5+9}{15}-\frac{1}{2}\right)\times 3}
Since \frac{5}{15} and \frac{9}{15} have the same denominator, add them by adding their numerators.
\frac{\frac{195}{7}}{\left(\frac{14}{15}-\frac{1}{2}\right)\times 3}
Add 5 and 9 to get 14.
\frac{\frac{195}{7}}{\left(\frac{28}{30}-\frac{15}{30}\right)\times 3}
Least common multiple of 15 and 2 is 30. Convert \frac{14}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{\frac{195}{7}}{\frac{28-15}{30}\times 3}
Since \frac{28}{30} and \frac{15}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{195}{7}}{\frac{13}{30}\times 3}
Subtract 15 from 28 to get 13.
\frac{\frac{195}{7}}{\frac{13\times 3}{30}}
Express \frac{13}{30}\times 3 as a single fraction.
\frac{\frac{195}{7}}{\frac{39}{30}}
Multiply 13 and 3 to get 39.
\frac{\frac{195}{7}}{\frac{13}{10}}
Reduce the fraction \frac{39}{30} to lowest terms by extracting and canceling out 3.
\frac{195}{7}\times \frac{10}{13}
Divide \frac{195}{7} by \frac{13}{10} by multiplying \frac{195}{7} by the reciprocal of \frac{13}{10}.
\frac{195\times 10}{7\times 13}
Multiply \frac{195}{7} times \frac{10}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{1950}{91}
Do the multiplications in the fraction \frac{195\times 10}{7\times 13}.
\frac{150}{7}
Reduce the fraction \frac{1950}{91} to lowest terms by extracting and canceling out 13.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}