Evaluate
\frac{299}{20}=14.95
Factor
\frac{13 \cdot 23}{2 ^ {2} \cdot 5} = 14\frac{19}{20} = 14.95
Share
Copied to clipboard
\frac{18\times 3}{20}+\frac{59}{4}-\frac{5}{2}
Divide \frac{18}{1} by \frac{20}{3} by multiplying \frac{18}{1} by the reciprocal of \frac{20}{3}.
\frac{54}{20}+\frac{59}{4}-\frac{5}{2}
Multiply 18 and 3 to get 54.
\frac{27}{10}+\frac{59}{4}-\frac{5}{2}
Reduce the fraction \frac{54}{20} to lowest terms by extracting and canceling out 2.
\frac{54}{20}+\frac{295}{20}-\frac{5}{2}
Least common multiple of 10 and 4 is 20. Convert \frac{27}{10} and \frac{59}{4} to fractions with denominator 20.
\frac{54+295}{20}-\frac{5}{2}
Since \frac{54}{20} and \frac{295}{20} have the same denominator, add them by adding their numerators.
\frac{349}{20}-\frac{5}{2}
Add 54 and 295 to get 349.
\frac{349}{20}-\frac{50}{20}
Least common multiple of 20 and 2 is 20. Convert \frac{349}{20} and \frac{5}{2} to fractions with denominator 20.
\frac{349-50}{20}
Since \frac{349}{20} and \frac{50}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{299}{20}
Subtract 50 from 349 to get 299.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}