Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z^{2}-4iz-4=\left(1-i\right)^{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z-2i\right)^{2}.
z^{2}-4iz-4=-4
Calculate 1-i to the power of 4 and get -4.
z^{2}-4iz-4+4=0
Add 4 to both sides.
z^{2}-4iz=0
Add -4 and 4 to get 0.
z\left(z-4i\right)=0
Factor out z.
z=0 z=4i
To find equation solutions, solve z=0 and z-4i=0.
z^{2}-4iz-4=\left(1-i\right)^{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z-2i\right)^{2}.
z^{2}-4iz-4=-4
Calculate 1-i to the power of 4 and get -4.
z^{2}-4iz-4+4=0
Add 4 to both sides.
z^{2}-4iz=0
Add -4 and 4 to get 0.
z=\frac{4i±\sqrt{\left(-4i\right)^{2}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4i for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{4i±4i}{2}
Take the square root of \left(-4i\right)^{2}.
z=\frac{8i}{2}
Now solve the equation z=\frac{4i±4i}{2} when ± is plus. Add 4i to 4i.
z=4i
Divide 8i by 2.
z=\frac{0}{2}
Now solve the equation z=\frac{4i±4i}{2} when ± is minus. Subtract 4i from 4i.
z=0
Divide 0 by 2.
z=4i z=0
The equation is now solved.
z^{2}-4iz-4=\left(1-i\right)^{4}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(z-2i\right)^{2}.
z^{2}-4iz-4=-4
Calculate 1-i to the power of 4 and get -4.
\left(z-2i\right)^{2}=-4
Factor z^{2}-4iz-4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-2i\right)^{2}}=\sqrt{-4}
Take the square root of both sides of the equation.
z-2i=2i z-2i=-2i
Simplify.
z=4i z=0
Add 2i to both sides of the equation.