Solve for z
z=\sqrt{2}\approx 1.414213562
z=-\sqrt{2}\approx -1.414213562
Share
Copied to clipboard
z^{2}-1=1
Consider \left(z+1\right)\left(z-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
z^{2}=1+1
Add 1 to both sides.
z^{2}=2
Add 1 and 1 to get 2.
z=\sqrt{2} z=-\sqrt{2}
Take the square root of both sides of the equation.
z^{2}-1=1
Consider \left(z+1\right)\left(z-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
z^{2}-1-1=0
Subtract 1 from both sides.
z^{2}-2=0
Subtract 1 from -1 to get -2.
z=\frac{0±\sqrt{0^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-2\right)}}{2}
Square 0.
z=\frac{0±\sqrt{8}}{2}
Multiply -4 times -2.
z=\frac{0±2\sqrt{2}}{2}
Take the square root of 8.
z=\sqrt{2}
Now solve the equation z=\frac{0±2\sqrt{2}}{2} when ± is plus.
z=-\sqrt{2}
Now solve the equation z=\frac{0±2\sqrt{2}}{2} when ± is minus.
z=\sqrt{2} z=-\sqrt{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}