Solve for y
y=-4
y=7
Graph
Share
Copied to clipboard
y^{2}-8y+16=2y^{2}-11y-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
y^{2}-8y+16-2y^{2}=-11y-12
Subtract 2y^{2} from both sides.
-y^{2}-8y+16=-11y-12
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-8y+16+11y=-12
Add 11y to both sides.
-y^{2}+3y+16=-12
Combine -8y and 11y to get 3y.
-y^{2}+3y+16+12=0
Add 12 to both sides.
-y^{2}+3y+28=0
Add 16 and 12 to get 28.
a+b=3 ab=-28=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by+28. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=7 b=-4
The solution is the pair that gives sum 3.
\left(-y^{2}+7y\right)+\left(-4y+28\right)
Rewrite -y^{2}+3y+28 as \left(-y^{2}+7y\right)+\left(-4y+28\right).
-y\left(y-7\right)-4\left(y-7\right)
Factor out -y in the first and -4 in the second group.
\left(y-7\right)\left(-y-4\right)
Factor out common term y-7 by using distributive property.
y=7 y=-4
To find equation solutions, solve y-7=0 and -y-4=0.
y^{2}-8y+16=2y^{2}-11y-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
y^{2}-8y+16-2y^{2}=-11y-12
Subtract 2y^{2} from both sides.
-y^{2}-8y+16=-11y-12
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-8y+16+11y=-12
Add 11y to both sides.
-y^{2}+3y+16=-12
Combine -8y and 11y to get 3y.
-y^{2}+3y+16+12=0
Add 12 to both sides.
-y^{2}+3y+28=0
Add 16 and 12 to get 28.
y=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\times 28}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 3 for b, and 28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-3±\sqrt{9-4\left(-1\right)\times 28}}{2\left(-1\right)}
Square 3.
y=\frac{-3±\sqrt{9+4\times 28}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-3±\sqrt{9+112}}{2\left(-1\right)}
Multiply 4 times 28.
y=\frac{-3±\sqrt{121}}{2\left(-1\right)}
Add 9 to 112.
y=\frac{-3±11}{2\left(-1\right)}
Take the square root of 121.
y=\frac{-3±11}{-2}
Multiply 2 times -1.
y=\frac{8}{-2}
Now solve the equation y=\frac{-3±11}{-2} when ± is plus. Add -3 to 11.
y=-4
Divide 8 by -2.
y=-\frac{14}{-2}
Now solve the equation y=\frac{-3±11}{-2} when ± is minus. Subtract 11 from -3.
y=7
Divide -14 by -2.
y=-4 y=7
The equation is now solved.
y^{2}-8y+16=2y^{2}-11y-12
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-4\right)^{2}.
y^{2}-8y+16-2y^{2}=-11y-12
Subtract 2y^{2} from both sides.
-y^{2}-8y+16=-11y-12
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-8y+16+11y=-12
Add 11y to both sides.
-y^{2}+3y+16=-12
Combine -8y and 11y to get 3y.
-y^{2}+3y=-12-16
Subtract 16 from both sides.
-y^{2}+3y=-28
Subtract 16 from -12 to get -28.
\frac{-y^{2}+3y}{-1}=-\frac{28}{-1}
Divide both sides by -1.
y^{2}+\frac{3}{-1}y=-\frac{28}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-3y=-\frac{28}{-1}
Divide 3 by -1.
y^{2}-3y=28
Divide -28 by -1.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=28+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=28+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=\frac{121}{4}
Add 28 to \frac{9}{4}.
\left(y-\frac{3}{2}\right)^{2}=\frac{121}{4}
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
y-\frac{3}{2}=\frac{11}{2} y-\frac{3}{2}=-\frac{11}{2}
Simplify.
y=7 y=-4
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}