( y - 2 x ^ { 3 } ) d x - ( x - x ^ { 2 } y ) d y = 0
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=0\text{ or }y=-\sqrt{2}x\text{ or }y=\sqrt{2}x\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=0\text{ or }|y|=\sqrt{2}|x|\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=-\frac{\sqrt{2}y}{2}\text{; }x=0\text{; }x=\frac{\sqrt{2}y}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=\frac{\sqrt{2}y}{2}\text{; }x=0\text{; }x=-\frac{\sqrt{2}y}{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(yd-2x^{3}d\right)x-\left(x-x^{2}y\right)dy=0
Use the distributive property to multiply y-2x^{3} by d.
ydx-2dx^{4}-\left(x-x^{2}y\right)dy=0
Use the distributive property to multiply yd-2x^{3}d by x.
ydx-2dx^{4}+\left(-x+x^{2}y\right)dy=0
Use the distributive property to multiply -1 by x-x^{2}y.
ydx-2dx^{4}+\left(-xd+x^{2}yd\right)y=0
Use the distributive property to multiply -x+x^{2}y by d.
ydx-2dx^{4}-xdy+x^{2}dy^{2}=0
Use the distributive property to multiply -xd+x^{2}yd by y.
-2dx^{4}+x^{2}dy^{2}=0
Combine ydx and -xdy to get 0.
\left(-2x^{4}+x^{2}y^{2}\right)d=0
Combine all terms containing d.
\left(x^{2}y^{2}-2x^{4}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -2x^{4}+x^{2}y^{2}.
\left(yd-2x^{3}d\right)x-\left(x-x^{2}y\right)dy=0
Use the distributive property to multiply y-2x^{3} by d.
ydx-2dx^{4}-\left(x-x^{2}y\right)dy=0
Use the distributive property to multiply yd-2x^{3}d by x.
ydx-2dx^{4}+\left(-x+x^{2}y\right)dy=0
Use the distributive property to multiply -1 by x-x^{2}y.
ydx-2dx^{4}+\left(-xd+x^{2}yd\right)y=0
Use the distributive property to multiply -x+x^{2}y by d.
ydx-2dx^{4}-xdy+x^{2}dy^{2}=0
Use the distributive property to multiply -xd+x^{2}yd by y.
-2dx^{4}+x^{2}dy^{2}=0
Combine ydx and -xdy to get 0.
\left(-2x^{4}+x^{2}y^{2}\right)d=0
Combine all terms containing d.
\left(x^{2}y^{2}-2x^{4}\right)d=0
The equation is in standard form.
d=0
Divide 0 by -2x^{4}+x^{2}y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}