Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}-4y+4-7\left(y-2\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-7y+14+6=0
Use the distributive property to multiply -7 by y-2.
y^{2}-11y+4+14+6=0
Combine -4y and -7y to get -11y.
y^{2}-11y+18+6=0
Add 4 and 14 to get 18.
y^{2}-11y+24=0
Add 18 and 6 to get 24.
a+b=-11 ab=24
To solve the equation, factor y^{2}-11y+24 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-8 b=-3
The solution is the pair that gives sum -11.
\left(y-8\right)\left(y-3\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=8 y=3
To find equation solutions, solve y-8=0 and y-3=0.
y^{2}-4y+4-7\left(y-2\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-7y+14+6=0
Use the distributive property to multiply -7 by y-2.
y^{2}-11y+4+14+6=0
Combine -4y and -7y to get -11y.
y^{2}-11y+18+6=0
Add 4 and 14 to get 18.
y^{2}-11y+24=0
Add 18 and 6 to get 24.
a+b=-11 ab=1\times 24=24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by+24. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-8 b=-3
The solution is the pair that gives sum -11.
\left(y^{2}-8y\right)+\left(-3y+24\right)
Rewrite y^{2}-11y+24 as \left(y^{2}-8y\right)+\left(-3y+24\right).
y\left(y-8\right)-3\left(y-8\right)
Factor out y in the first and -3 in the second group.
\left(y-8\right)\left(y-3\right)
Factor out common term y-8 by using distributive property.
y=8 y=3
To find equation solutions, solve y-8=0 and y-3=0.
y^{2}-4y+4-7\left(y-2\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-7y+14+6=0
Use the distributive property to multiply -7 by y-2.
y^{2}-11y+4+14+6=0
Combine -4y and -7y to get -11y.
y^{2}-11y+18+6=0
Add 4 and 14 to get 18.
y^{2}-11y+24=0
Add 18 and 6 to get 24.
y=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -11 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
Square -11.
y=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
Multiply -4 times 24.
y=\frac{-\left(-11\right)±\sqrt{25}}{2}
Add 121 to -96.
y=\frac{-\left(-11\right)±5}{2}
Take the square root of 25.
y=\frac{11±5}{2}
The opposite of -11 is 11.
y=\frac{16}{2}
Now solve the equation y=\frac{11±5}{2} when ± is plus. Add 11 to 5.
y=8
Divide 16 by 2.
y=\frac{6}{2}
Now solve the equation y=\frac{11±5}{2} when ± is minus. Subtract 5 from 11.
y=3
Divide 6 by 2.
y=8 y=3
The equation is now solved.
y^{2}-4y+4-7\left(y-2\right)+6=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+4-7y+14+6=0
Use the distributive property to multiply -7 by y-2.
y^{2}-11y+4+14+6=0
Combine -4y and -7y to get -11y.
y^{2}-11y+18+6=0
Add 4 and 14 to get 18.
y^{2}-11y+24=0
Add 18 and 6 to get 24.
y^{2}-11y=-24
Subtract 24 from both sides. Anything subtracted from zero gives its negation.
y^{2}-11y+\left(-\frac{11}{2}\right)^{2}=-24+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-11y+\frac{121}{4}=-24+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-11y+\frac{121}{4}=\frac{25}{4}
Add -24 to \frac{121}{4}.
\left(y-\frac{11}{2}\right)^{2}=\frac{25}{4}
Factor y^{2}-11y+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
y-\frac{11}{2}=\frac{5}{2} y-\frac{11}{2}=-\frac{5}{2}
Simplify.
y=8 y=3
Add \frac{11}{2} to both sides of the equation.