Solve for y
y=-2
y=3
Graph
Share
Copied to clipboard
y^{2}-4y+4+48=\left(2-3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+52=\left(2-3y\right)^{2}
Add 4 and 48 to get 52.
y^{2}-4y+52=4-12y+9y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3y\right)^{2}.
y^{2}-4y+52-4=-12y+9y^{2}
Subtract 4 from both sides.
y^{2}-4y+48=-12y+9y^{2}
Subtract 4 from 52 to get 48.
y^{2}-4y+48+12y=9y^{2}
Add 12y to both sides.
y^{2}+8y+48=9y^{2}
Combine -4y and 12y to get 8y.
y^{2}+8y+48-9y^{2}=0
Subtract 9y^{2} from both sides.
-8y^{2}+8y+48=0
Combine y^{2} and -9y^{2} to get -8y^{2}.
-y^{2}+y+6=0
Divide both sides by 8.
a+b=1 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=3 b=-2
The solution is the pair that gives sum 1.
\left(-y^{2}+3y\right)+\left(-2y+6\right)
Rewrite -y^{2}+y+6 as \left(-y^{2}+3y\right)+\left(-2y+6\right).
-y\left(y-3\right)-2\left(y-3\right)
Factor out -y in the first and -2 in the second group.
\left(y-3\right)\left(-y-2\right)
Factor out common term y-3 by using distributive property.
y=3 y=-2
To find equation solutions, solve y-3=0 and -y-2=0.
y^{2}-4y+4+48=\left(2-3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+52=\left(2-3y\right)^{2}
Add 4 and 48 to get 52.
y^{2}-4y+52=4-12y+9y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3y\right)^{2}.
y^{2}-4y+52-4=-12y+9y^{2}
Subtract 4 from both sides.
y^{2}-4y+48=-12y+9y^{2}
Subtract 4 from 52 to get 48.
y^{2}-4y+48+12y=9y^{2}
Add 12y to both sides.
y^{2}+8y+48=9y^{2}
Combine -4y and 12y to get 8y.
y^{2}+8y+48-9y^{2}=0
Subtract 9y^{2} from both sides.
-8y^{2}+8y+48=0
Combine y^{2} and -9y^{2} to get -8y^{2}.
y=\frac{-8±\sqrt{8^{2}-4\left(-8\right)\times 48}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 8 for b, and 48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-8±\sqrt{64-4\left(-8\right)\times 48}}{2\left(-8\right)}
Square 8.
y=\frac{-8±\sqrt{64+32\times 48}}{2\left(-8\right)}
Multiply -4 times -8.
y=\frac{-8±\sqrt{64+1536}}{2\left(-8\right)}
Multiply 32 times 48.
y=\frac{-8±\sqrt{1600}}{2\left(-8\right)}
Add 64 to 1536.
y=\frac{-8±40}{2\left(-8\right)}
Take the square root of 1600.
y=\frac{-8±40}{-16}
Multiply 2 times -8.
y=\frac{32}{-16}
Now solve the equation y=\frac{-8±40}{-16} when ± is plus. Add -8 to 40.
y=-2
Divide 32 by -16.
y=-\frac{48}{-16}
Now solve the equation y=\frac{-8±40}{-16} when ± is minus. Subtract 40 from -8.
y=3
Divide -48 by -16.
y=-2 y=3
The equation is now solved.
y^{2}-4y+4+48=\left(2-3y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
y^{2}-4y+52=\left(2-3y\right)^{2}
Add 4 and 48 to get 52.
y^{2}-4y+52=4-12y+9y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-3y\right)^{2}.
y^{2}-4y+52+12y=4+9y^{2}
Add 12y to both sides.
y^{2}+8y+52=4+9y^{2}
Combine -4y and 12y to get 8y.
y^{2}+8y+52-9y^{2}=4
Subtract 9y^{2} from both sides.
-8y^{2}+8y+52=4
Combine y^{2} and -9y^{2} to get -8y^{2}.
-8y^{2}+8y=4-52
Subtract 52 from both sides.
-8y^{2}+8y=-48
Subtract 52 from 4 to get -48.
\frac{-8y^{2}+8y}{-8}=-\frac{48}{-8}
Divide both sides by -8.
y^{2}+\frac{8}{-8}y=-\frac{48}{-8}
Dividing by -8 undoes the multiplication by -8.
y^{2}-y=-\frac{48}{-8}
Divide 8 by -8.
y^{2}-y=6
Divide -48 by -8.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=6+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-y+\frac{1}{4}=6+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-y+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(y-\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor y^{2}-y+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
y-\frac{1}{2}=\frac{5}{2} y-\frac{1}{2}=-\frac{5}{2}
Simplify.
y=3 y=-2
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}