Solve for y (complex solution)
y=3
y=-3
y=-i
y=i
Solve for y
y=-3
y=3
Graph
Quiz
Quadratic Equation
5 problems similar to:
( y ^ { 2 } - 7 ) ^ { 2 } + 6 ( y ^ { 2 } - 7 ) - 16 = 0
Share
Copied to clipboard
\left(y^{2}\right)^{2}-14y^{2}+49+6\left(y^{2}-7\right)-16=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-7\right)^{2}.
y^{4}-14y^{2}+49+6\left(y^{2}-7\right)-16=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y^{4}-14y^{2}+49+6y^{2}-42-16=0
Use the distributive property to multiply 6 by y^{2}-7.
y^{4}-8y^{2}+49-42-16=0
Combine -14y^{2} and 6y^{2} to get -8y^{2}.
y^{4}-8y^{2}+7-16=0
Subtract 42 from 49 to get 7.
y^{4}-8y^{2}-9=0
Subtract 16 from 7 to get -9.
t^{2}-8t-9=0
Substitute t for y^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and -9 for c in the quadratic formula.
t=\frac{8±10}{2}
Do the calculations.
t=9 t=-1
Solve the equation t=\frac{8±10}{2} when ± is plus and when ± is minus.
y=-3 y=3 y=-i y=i
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
\left(y^{2}\right)^{2}-14y^{2}+49+6\left(y^{2}-7\right)-16=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y^{2}-7\right)^{2}.
y^{4}-14y^{2}+49+6\left(y^{2}-7\right)-16=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
y^{4}-14y^{2}+49+6y^{2}-42-16=0
Use the distributive property to multiply 6 by y^{2}-7.
y^{4}-8y^{2}+49-42-16=0
Combine -14y^{2} and 6y^{2} to get -8y^{2}.
y^{4}-8y^{2}+7-16=0
Subtract 42 from 49 to get 7.
y^{4}-8y^{2}-9=0
Subtract 16 from 7 to get -9.
t^{2}-8t-9=0
Substitute t for y^{2}.
t=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 1\left(-9\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -8 for b, and -9 for c in the quadratic formula.
t=\frac{8±10}{2}
Do the calculations.
t=9 t=-1
Solve the equation t=\frac{8±10}{2} when ± is plus and when ± is minus.
y=3 y=-3
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}