Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-y^{2}-3y-4y+3
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}-7y+3
Combine -3y and -4y to get -7y.
factor(-y^{2}-3y-4y+3)
Combine y^{2} and -2y^{2} to get -y^{2}.
factor(-y^{2}-7y+3)
Combine -3y and -4y to get -7y.
-y^{2}-7y+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square -7.
y=\frac{-\left(-7\right)±\sqrt{49+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-\left(-7\right)±\sqrt{49+12}}{2\left(-1\right)}
Multiply 4 times 3.
y=\frac{-\left(-7\right)±\sqrt{61}}{2\left(-1\right)}
Add 49 to 12.
y=\frac{7±\sqrt{61}}{2\left(-1\right)}
The opposite of -7 is 7.
y=\frac{7±\sqrt{61}}{-2}
Multiply 2 times -1.
y=\frac{\sqrt{61}+7}{-2}
Now solve the equation y=\frac{7±\sqrt{61}}{-2} when ± is plus. Add 7 to \sqrt{61}.
y=\frac{-\sqrt{61}-7}{2}
Divide 7+\sqrt{61} by -2.
y=\frac{7-\sqrt{61}}{-2}
Now solve the equation y=\frac{7±\sqrt{61}}{-2} when ± is minus. Subtract \sqrt{61} from 7.
y=\frac{\sqrt{61}-7}{2}
Divide 7-\sqrt{61} by -2.
-y^{2}-7y+3=-\left(y-\frac{-\sqrt{61}-7}{2}\right)\left(y-\frac{\sqrt{61}-7}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-7-\sqrt{61}}{2} for x_{1} and \frac{-7+\sqrt{61}}{2} for x_{2}.