( y ^ { 2 } - 1 ) \cdot d x = ( x - 1 ) \cdot y \cdot d y
Solve for d (complex solution)
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{C}\text{, }&x=y^{2}\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}\\x=y^{2}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&d=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x=y^{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=y^{2}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
Multiply y and y to get y^{2}.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}-1 by d.
y^{2}dx-dx=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}d-d by x.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
Use the distributive property to multiply x-1 by y^{2}.
y^{2}dx-dx=xy^{2}d-y^{2}d
Use the distributive property to multiply xy^{2}-y^{2} by d.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Subtract xy^{2}d from both sides.
-dx=-y^{2}d
Combine y^{2}dx and -xy^{2}d to get 0.
-dx+y^{2}d=0
Add y^{2}d to both sides.
\left(-x+y^{2}\right)d=0
Combine all terms containing d.
\left(y^{2}-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by -x+y^{2}.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
Multiply y and y to get y^{2}.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}-1 by d.
y^{2}dx-dx=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}d-d by x.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
Use the distributive property to multiply x-1 by y^{2}.
y^{2}dx-dx=xy^{2}d-y^{2}d
Use the distributive property to multiply xy^{2}-y^{2} by d.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Subtract xy^{2}d from both sides.
-dx=-y^{2}d
Combine y^{2}dx and -xy^{2}d to get 0.
dx=y^{2}d
Cancel out -1 on both sides.
dx=dy^{2}
The equation is in standard form.
\frac{dx}{d}=\frac{dy^{2}}{d}
Divide both sides by d.
x=\frac{dy^{2}}{d}
Dividing by d undoes the multiplication by d.
x=y^{2}
Divide y^{2}d by d.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
Multiply y and y to get y^{2}.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}-1 by d.
y^{2}dx-dx=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}d-d by x.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
Use the distributive property to multiply x-1 by y^{2}.
y^{2}dx-dx=xy^{2}d-y^{2}d
Use the distributive property to multiply xy^{2}-y^{2} by d.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Subtract xy^{2}d from both sides.
-dx=-y^{2}d
Combine y^{2}dx and -xy^{2}d to get 0.
-dx+y^{2}d=0
Add y^{2}d to both sides.
\left(-x+y^{2}\right)d=0
Combine all terms containing d.
\left(y^{2}-x\right)d=0
The equation is in standard form.
d=0
Divide 0 by -x+y^{2}.
\left(y^{2}-1\right)dx=\left(x-1\right)y^{2}d
Multiply y and y to get y^{2}.
\left(y^{2}d-d\right)x=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}-1 by d.
y^{2}dx-dx=\left(x-1\right)y^{2}d
Use the distributive property to multiply y^{2}d-d by x.
y^{2}dx-dx=\left(xy^{2}-y^{2}\right)d
Use the distributive property to multiply x-1 by y^{2}.
y^{2}dx-dx=xy^{2}d-y^{2}d
Use the distributive property to multiply xy^{2}-y^{2} by d.
y^{2}dx-dx-xy^{2}d=-y^{2}d
Subtract xy^{2}d from both sides.
-dx=-y^{2}d
Combine y^{2}dx and -xy^{2}d to get 0.
dx=y^{2}d
Cancel out -1 on both sides.
dx=dy^{2}
The equation is in standard form.
\frac{dx}{d}=\frac{dy^{2}}{d}
Divide both sides by d.
x=\frac{dy^{2}}{d}
Dividing by d undoes the multiplication by d.
x=y^{2}
Divide y^{2}d by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}