Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+2y-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-2±\sqrt{2^{2}-4\left(-2\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-2±\sqrt{4-4\left(-2\right)}}{2}
Square 2.
y=\frac{-2±\sqrt{4+8}}{2}
Multiply -4 times -2.
y=\frac{-2±\sqrt{12}}{2}
Add 4 to 8.
y=\frac{-2±2\sqrt{3}}{2}
Take the square root of 12.
y=\frac{2\sqrt{3}-2}{2}
Now solve the equation y=\frac{-2±2\sqrt{3}}{2} when ± is plus. Add -2 to 2\sqrt{3}.
y=\sqrt{3}-1
Divide -2+2\sqrt{3} by 2.
y=\frac{-2\sqrt{3}-2}{2}
Now solve the equation y=\frac{-2±2\sqrt{3}}{2} when ± is minus. Subtract 2\sqrt{3} from -2.
y=-\sqrt{3}-1
Divide -2-2\sqrt{3} by 2.
y^{2}+2y-2=\left(y-\left(\sqrt{3}-1\right)\right)\left(y-\left(-\sqrt{3}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1+\sqrt{3} for x_{1} and -1-\sqrt{3} for x_{2}.