Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Solve for q
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+2yq+q^{2}-\left(y-q\right)^{2}=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+q\right)^{2}.
y^{2}+2yq+q^{2}-\left(y^{2}-2yq+q^{2}\right)=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-q\right)^{2}.
y^{2}+2yq+q^{2}-y^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
To find the opposite of y^{2}-2yq+q^{2}, find the opposite of each term.
2yq+q^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
Combine y^{2} and -y^{2} to get 0.
4yq+q^{2}-q^{2}=\left(-q\right)\left(q-7y\right)
Combine 2yq and 2yq to get 4yq.
4yq=\left(-q\right)\left(q-7y\right)
Combine q^{2} and -q^{2} to get 0.
4yq=\left(-q\right)q-7\left(-q\right)y
Use the distributive property to multiply -q by q-7y.
4yq=\left(-q\right)q+7qy
Multiply -7 and -1 to get 7.
4yq-7qy=\left(-q\right)q
Subtract 7qy from both sides.
-3yq=\left(-q\right)q
Combine 4yq and -7qy to get -3yq.
-3yq=-q^{2}
Multiply q and q to get q^{2}.
\left(-3q\right)y=-q^{2}
The equation is in standard form.
\frac{\left(-3q\right)y}{-3q}=-\frac{q^{2}}{-3q}
Divide both sides by -3q.
y=-\frac{q^{2}}{-3q}
Dividing by -3q undoes the multiplication by -3q.
y=\frac{q}{3}
Divide -q^{2} by -3q.
y^{2}+2yq+q^{2}-\left(y-q\right)^{2}=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+q\right)^{2}.
y^{2}+2yq+q^{2}-\left(y^{2}-2yq+q^{2}\right)=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-q\right)^{2}.
y^{2}+2yq+q^{2}-y^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
To find the opposite of y^{2}-2yq+q^{2}, find the opposite of each term.
2yq+q^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
Combine y^{2} and -y^{2} to get 0.
4yq+q^{2}-q^{2}=\left(-q\right)\left(q-7y\right)
Combine 2yq and 2yq to get 4yq.
4yq=\left(-q\right)\left(q-7y\right)
Combine q^{2} and -q^{2} to get 0.
4yq=\left(-q\right)q-7\left(-q\right)y
Use the distributive property to multiply -q by q-7y.
4yq=\left(-q\right)q+7qy
Multiply -7 and -1 to get 7.
4yq-7qy=\left(-q\right)q
Subtract 7qy from both sides.
-3yq=\left(-q\right)q
Combine 4yq and -7qy to get -3yq.
-3yq=-q^{2}
Multiply q and q to get q^{2}.
\left(-3q\right)y=-q^{2}
The equation is in standard form.
\frac{\left(-3q\right)y}{-3q}=-\frac{q^{2}}{-3q}
Divide both sides by -3q.
y=-\frac{q^{2}}{-3q}
Dividing by -3q undoes the multiplication by -3q.
y=\frac{q}{3}
Divide -q^{2} by -3q.