Solve for y (complex solution)
\left\{\begin{matrix}\\y=\frac{q}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&q=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}\\y=\frac{q}{3}\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&q=0\end{matrix}\right.
Solve for q
q=3y
q=0
Graph
Share
Copied to clipboard
y^{2}+2yq+q^{2}-\left(y-q\right)^{2}=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+q\right)^{2}.
y^{2}+2yq+q^{2}-\left(y^{2}-2yq+q^{2}\right)=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-q\right)^{2}.
y^{2}+2yq+q^{2}-y^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
To find the opposite of y^{2}-2yq+q^{2}, find the opposite of each term.
2yq+q^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
Combine y^{2} and -y^{2} to get 0.
4yq+q^{2}-q^{2}=\left(-q\right)\left(q-7y\right)
Combine 2yq and 2yq to get 4yq.
4yq=\left(-q\right)\left(q-7y\right)
Combine q^{2} and -q^{2} to get 0.
4yq=\left(-q\right)q-7\left(-q\right)y
Use the distributive property to multiply -q by q-7y.
4yq=\left(-q\right)q+7qy
Multiply -7 and -1 to get 7.
4yq-7qy=\left(-q\right)q
Subtract 7qy from both sides.
-3yq=\left(-q\right)q
Combine 4yq and -7qy to get -3yq.
-3yq=-q^{2}
Multiply q and q to get q^{2}.
\left(-3q\right)y=-q^{2}
The equation is in standard form.
\frac{\left(-3q\right)y}{-3q}=-\frac{q^{2}}{-3q}
Divide both sides by -3q.
y=-\frac{q^{2}}{-3q}
Dividing by -3q undoes the multiplication by -3q.
y=\frac{q}{3}
Divide -q^{2} by -3q.
y^{2}+2yq+q^{2}-\left(y-q\right)^{2}=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+q\right)^{2}.
y^{2}+2yq+q^{2}-\left(y^{2}-2yq+q^{2}\right)=\left(-q\right)\left(q-7y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-q\right)^{2}.
y^{2}+2yq+q^{2}-y^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
To find the opposite of y^{2}-2yq+q^{2}, find the opposite of each term.
2yq+q^{2}+2yq-q^{2}=\left(-q\right)\left(q-7y\right)
Combine y^{2} and -y^{2} to get 0.
4yq+q^{2}-q^{2}=\left(-q\right)\left(q-7y\right)
Combine 2yq and 2yq to get 4yq.
4yq=\left(-q\right)\left(q-7y\right)
Combine q^{2} and -q^{2} to get 0.
4yq=\left(-q\right)q-7\left(-q\right)y
Use the distributive property to multiply -q by q-7y.
4yq=\left(-q\right)q+7qy
Multiply -7 and -1 to get 7.
4yq-7qy=\left(-q\right)q
Subtract 7qy from both sides.
-3yq=\left(-q\right)q
Combine 4yq and -7qy to get -3yq.
-3yq=-q^{2}
Multiply q and q to get q^{2}.
\left(-3q\right)y=-q^{2}
The equation is in standard form.
\frac{\left(-3q\right)y}{-3q}=-\frac{q^{2}}{-3q}
Divide both sides by -3q.
y=-\frac{q^{2}}{-3q}
Dividing by -3q undoes the multiplication by -3q.
y=\frac{q}{3}
Divide -q^{2} by -3q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}