Solve for x
x=\frac{-9y-21}{11}
Solve for y
y=-\frac{11x}{9}-\frac{7}{3}
Graph
Share
Copied to clipboard
y+6=-\frac{11}{9}x+\frac{11}{3}
Use the distributive property to multiply -\frac{11}{9} by x-3.
-\frac{11}{9}x+\frac{11}{3}=y+6
Swap sides so that all variable terms are on the left hand side.
-\frac{11}{9}x=y+6-\frac{11}{3}
Subtract \frac{11}{3} from both sides.
-\frac{11}{9}x=y+\frac{7}{3}
Subtract \frac{11}{3} from 6 to get \frac{7}{3}.
\frac{-\frac{11}{9}x}{-\frac{11}{9}}=\frac{y+\frac{7}{3}}{-\frac{11}{9}}
Divide both sides of the equation by -\frac{11}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+\frac{7}{3}}{-\frac{11}{9}}
Dividing by -\frac{11}{9} undoes the multiplication by -\frac{11}{9}.
x=\frac{-9y-21}{11}
Divide y+\frac{7}{3} by -\frac{11}{9} by multiplying y+\frac{7}{3} by the reciprocal of -\frac{11}{9}.
y+6=-\frac{11}{9}x+\frac{11}{3}
Use the distributive property to multiply -\frac{11}{9} by x-3.
y=-\frac{11}{9}x+\frac{11}{3}-6
Subtract 6 from both sides.
y=-\frac{11}{9}x-\frac{7}{3}
Subtract 6 from \frac{11}{3} to get -\frac{7}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}