Solve for y
y=\frac{-505+\sqrt{85003}i}{2}\approx -252.5+145.776369827i
y=\frac{-\sqrt{85003}i-505}{2}\approx -252.5-145.776369827i
Share
Copied to clipboard
y^{2}+1010y+255025+y^{2}+505y+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+505\right)^{2}.
2y^{2}+1010y+255025+505y+y^{2}=4
Combine y^{2} and y^{2} to get 2y^{2}.
2y^{2}+1515y+255025+y^{2}=4
Combine 1010y and 505y to get 1515y.
3y^{2}+1515y+255025=4
Combine 2y^{2} and y^{2} to get 3y^{2}.
3y^{2}+1515y+255025-4=0
Subtract 4 from both sides.
3y^{2}+1515y+255021=0
Subtract 4 from 255025 to get 255021.
y=\frac{-1515±\sqrt{1515^{2}-4\times 3\times 255021}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1515 for b, and 255021 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1515±\sqrt{2295225-4\times 3\times 255021}}{2\times 3}
Square 1515.
y=\frac{-1515±\sqrt{2295225-12\times 255021}}{2\times 3}
Multiply -4 times 3.
y=\frac{-1515±\sqrt{2295225-3060252}}{2\times 3}
Multiply -12 times 255021.
y=\frac{-1515±\sqrt{-765027}}{2\times 3}
Add 2295225 to -3060252.
y=\frac{-1515±3\sqrt{85003}i}{2\times 3}
Take the square root of -765027.
y=\frac{-1515±3\sqrt{85003}i}{6}
Multiply 2 times 3.
y=\frac{-1515+3\sqrt{85003}i}{6}
Now solve the equation y=\frac{-1515±3\sqrt{85003}i}{6} when ± is plus. Add -1515 to 3i\sqrt{85003}.
y=\frac{-505+\sqrt{85003}i}{2}
Divide -1515+3i\sqrt{85003} by 6.
y=\frac{-3\sqrt{85003}i-1515}{6}
Now solve the equation y=\frac{-1515±3\sqrt{85003}i}{6} when ± is minus. Subtract 3i\sqrt{85003} from -1515.
y=\frac{-\sqrt{85003}i-505}{2}
Divide -1515-3i\sqrt{85003} by 6.
y=\frac{-505+\sqrt{85003}i}{2} y=\frac{-\sqrt{85003}i-505}{2}
The equation is now solved.
y^{2}+1010y+255025+y^{2}+505y+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+505\right)^{2}.
2y^{2}+1010y+255025+505y+y^{2}=4
Combine y^{2} and y^{2} to get 2y^{2}.
2y^{2}+1515y+255025+y^{2}=4
Combine 1010y and 505y to get 1515y.
3y^{2}+1515y+255025=4
Combine 2y^{2} and y^{2} to get 3y^{2}.
3y^{2}+1515y=4-255025
Subtract 255025 from both sides.
3y^{2}+1515y=-255021
Subtract 255025 from 4 to get -255021.
\frac{3y^{2}+1515y}{3}=-\frac{255021}{3}
Divide both sides by 3.
y^{2}+\frac{1515}{3}y=-\frac{255021}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}+505y=-\frac{255021}{3}
Divide 1515 by 3.
y^{2}+505y=-85007
Divide -255021 by 3.
y^{2}+505y+\left(\frac{505}{2}\right)^{2}=-85007+\left(\frac{505}{2}\right)^{2}
Divide 505, the coefficient of the x term, by 2 to get \frac{505}{2}. Then add the square of \frac{505}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+505y+\frac{255025}{4}=-85007+\frac{255025}{4}
Square \frac{505}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+505y+\frac{255025}{4}=-\frac{85003}{4}
Add -85007 to \frac{255025}{4}.
\left(y+\frac{505}{2}\right)^{2}=-\frac{85003}{4}
Factor y^{2}+505y+\frac{255025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{505}{2}\right)^{2}}=\sqrt{-\frac{85003}{4}}
Take the square root of both sides of the equation.
y+\frac{505}{2}=\frac{\sqrt{85003}i}{2} y+\frac{505}{2}=-\frac{\sqrt{85003}i}{2}
Simplify.
y=\frac{-505+\sqrt{85003}i}{2} y=\frac{-\sqrt{85003}i-505}{2}
Subtract \frac{505}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}