Solve for y
y=-1
y=6
Graph
Share
Copied to clipboard
y^{2}+10y+25=2y^{2}+5y+19
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+5\right)^{2}.
y^{2}+10y+25-2y^{2}=5y+19
Subtract 2y^{2} from both sides.
-y^{2}+10y+25=5y+19
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+10y+25-5y=19
Subtract 5y from both sides.
-y^{2}+5y+25=19
Combine 10y and -5y to get 5y.
-y^{2}+5y+25-19=0
Subtract 19 from both sides.
-y^{2}+5y+6=0
Subtract 19 from 25 to get 6.
a+b=5 ab=-6=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by+6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=6 b=-1
The solution is the pair that gives sum 5.
\left(-y^{2}+6y\right)+\left(-y+6\right)
Rewrite -y^{2}+5y+6 as \left(-y^{2}+6y\right)+\left(-y+6\right).
-y\left(y-6\right)-\left(y-6\right)
Factor out -y in the first and -1 in the second group.
\left(y-6\right)\left(-y-1\right)
Factor out common term y-6 by using distributive property.
y=6 y=-1
To find equation solutions, solve y-6=0 and -y-1=0.
y^{2}+10y+25=2y^{2}+5y+19
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+5\right)^{2}.
y^{2}+10y+25-2y^{2}=5y+19
Subtract 2y^{2} from both sides.
-y^{2}+10y+25=5y+19
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+10y+25-5y=19
Subtract 5y from both sides.
-y^{2}+5y+25=19
Combine 10y and -5y to get 5y.
-y^{2}+5y+25-19=0
Subtract 19 from both sides.
-y^{2}+5y+6=0
Subtract 19 from 25 to get 6.
y=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 6}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-5±\sqrt{25-4\left(-1\right)\times 6}}{2\left(-1\right)}
Square 5.
y=\frac{-5±\sqrt{25+4\times 6}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-5±\sqrt{25+24}}{2\left(-1\right)}
Multiply 4 times 6.
y=\frac{-5±\sqrt{49}}{2\left(-1\right)}
Add 25 to 24.
y=\frac{-5±7}{2\left(-1\right)}
Take the square root of 49.
y=\frac{-5±7}{-2}
Multiply 2 times -1.
y=\frac{2}{-2}
Now solve the equation y=\frac{-5±7}{-2} when ± is plus. Add -5 to 7.
y=-1
Divide 2 by -2.
y=-\frac{12}{-2}
Now solve the equation y=\frac{-5±7}{-2} when ± is minus. Subtract 7 from -5.
y=6
Divide -12 by -2.
y=-1 y=6
The equation is now solved.
y^{2}+10y+25=2y^{2}+5y+19
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+5\right)^{2}.
y^{2}+10y+25-2y^{2}=5y+19
Subtract 2y^{2} from both sides.
-y^{2}+10y+25=5y+19
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+10y+25-5y=19
Subtract 5y from both sides.
-y^{2}+5y+25=19
Combine 10y and -5y to get 5y.
-y^{2}+5y=19-25
Subtract 25 from both sides.
-y^{2}+5y=-6
Subtract 25 from 19 to get -6.
\frac{-y^{2}+5y}{-1}=-\frac{6}{-1}
Divide both sides by -1.
y^{2}+\frac{5}{-1}y=-\frac{6}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-5y=-\frac{6}{-1}
Divide 5 by -1.
y^{2}-5y=6
Divide -6 by -1.
y^{2}-5y+\left(-\frac{5}{2}\right)^{2}=6+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-5y+\frac{25}{4}=6+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-5y+\frac{25}{4}=\frac{49}{4}
Add 6 to \frac{25}{4}.
\left(y-\frac{5}{2}\right)^{2}=\frac{49}{4}
Factor y^{2}-5y+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
y-\frac{5}{2}=\frac{7}{2} y-\frac{5}{2}=-\frac{7}{2}
Simplify.
y=6 y=-1
Add \frac{5}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}