Solve for y
y=4
y=7
Graph
Share
Copied to clipboard
y^{2}+8y+16=2y^{2}-3y+44
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+4\right)^{2}.
y^{2}+8y+16-2y^{2}=-3y+44
Subtract 2y^{2} from both sides.
-y^{2}+8y+16=-3y+44
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+8y+16+3y=44
Add 3y to both sides.
-y^{2}+11y+16=44
Combine 8y and 3y to get 11y.
-y^{2}+11y+16-44=0
Subtract 44 from both sides.
-y^{2}+11y-28=0
Subtract 44 from 16 to get -28.
a+b=11 ab=-\left(-28\right)=28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -y^{2}+ay+by-28. To find a and b, set up a system to be solved.
1,28 2,14 4,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 28.
1+28=29 2+14=16 4+7=11
Calculate the sum for each pair.
a=7 b=4
The solution is the pair that gives sum 11.
\left(-y^{2}+7y\right)+\left(4y-28\right)
Rewrite -y^{2}+11y-28 as \left(-y^{2}+7y\right)+\left(4y-28\right).
-y\left(y-7\right)+4\left(y-7\right)
Factor out -y in the first and 4 in the second group.
\left(y-7\right)\left(-y+4\right)
Factor out common term y-7 by using distributive property.
y=7 y=4
To find equation solutions, solve y-7=0 and -y+4=0.
y^{2}+8y+16=2y^{2}-3y+44
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+4\right)^{2}.
y^{2}+8y+16-2y^{2}=-3y+44
Subtract 2y^{2} from both sides.
-y^{2}+8y+16=-3y+44
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+8y+16+3y=44
Add 3y to both sides.
-y^{2}+11y+16=44
Combine 8y and 3y to get 11y.
-y^{2}+11y+16-44=0
Subtract 44 from both sides.
-y^{2}+11y-28=0
Subtract 44 from 16 to get -28.
y=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 11 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-11±\sqrt{121-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
Square 11.
y=\frac{-11±\sqrt{121+4\left(-28\right)}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-11±\sqrt{121-112}}{2\left(-1\right)}
Multiply 4 times -28.
y=\frac{-11±\sqrt{9}}{2\left(-1\right)}
Add 121 to -112.
y=\frac{-11±3}{2\left(-1\right)}
Take the square root of 9.
y=\frac{-11±3}{-2}
Multiply 2 times -1.
y=-\frac{8}{-2}
Now solve the equation y=\frac{-11±3}{-2} when ± is plus. Add -11 to 3.
y=4
Divide -8 by -2.
y=-\frac{14}{-2}
Now solve the equation y=\frac{-11±3}{-2} when ± is minus. Subtract 3 from -11.
y=7
Divide -14 by -2.
y=4 y=7
The equation is now solved.
y^{2}+8y+16=2y^{2}-3y+44
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+4\right)^{2}.
y^{2}+8y+16-2y^{2}=-3y+44
Subtract 2y^{2} from both sides.
-y^{2}+8y+16=-3y+44
Combine y^{2} and -2y^{2} to get -y^{2}.
-y^{2}+8y+16+3y=44
Add 3y to both sides.
-y^{2}+11y+16=44
Combine 8y and 3y to get 11y.
-y^{2}+11y=44-16
Subtract 16 from both sides.
-y^{2}+11y=28
Subtract 16 from 44 to get 28.
\frac{-y^{2}+11y}{-1}=\frac{28}{-1}
Divide both sides by -1.
y^{2}+\frac{11}{-1}y=\frac{28}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-11y=\frac{28}{-1}
Divide 11 by -1.
y^{2}-11y=-28
Divide 28 by -1.
y^{2}-11y+\left(-\frac{11}{2}\right)^{2}=-28+\left(-\frac{11}{2}\right)^{2}
Divide -11, the coefficient of the x term, by 2 to get -\frac{11}{2}. Then add the square of -\frac{11}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-11y+\frac{121}{4}=-28+\frac{121}{4}
Square -\frac{11}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-11y+\frac{121}{4}=\frac{9}{4}
Add -28 to \frac{121}{4}.
\left(y-\frac{11}{2}\right)^{2}=\frac{9}{4}
Factor y^{2}-11y+\frac{121}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{11}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
y-\frac{11}{2}=\frac{3}{2} y-\frac{11}{2}=-\frac{3}{2}
Simplify.
y=7 y=4
Add \frac{11}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}