Solve for x
x=\frac{-5y-55}{2}
Solve for y
y=-\frac{2x}{5}-11
Graph
Share
Copied to clipboard
-\frac{2}{5}x-8=y+3
Swap sides so that all variable terms are on the left hand side.
-\frac{2}{5}x=y+3+8
Add 8 to both sides.
-\frac{2}{5}x=y+11
Add 3 and 8 to get 11.
\frac{-\frac{2}{5}x}{-\frac{2}{5}}=\frac{y+11}{-\frac{2}{5}}
Divide both sides of the equation by -\frac{2}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y+11}{-\frac{2}{5}}
Dividing by -\frac{2}{5} undoes the multiplication by -\frac{2}{5}.
x=\frac{-5y-55}{2}
Divide y+11 by -\frac{2}{5} by multiplying y+11 by the reciprocal of -\frac{2}{5}.
y=-\frac{2}{5}x-8-3
Subtract 3 from both sides.
y=-\frac{2}{5}x-11
Subtract 3 from -8 to get -11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}