Solve for y
y=\frac{\sqrt{3}}{3}-10\approx -9.422649731
y=-\frac{\sqrt{3}}{3}-10\approx -10.577350269
Graph
Quiz
Quadratic Equation
5 problems similar to:
( y + 20 ) ^ { 2 } + y ^ { 2 } + 20 y + y ^ { 2 } = 101
Share
Copied to clipboard
y^{2}+40y+400+y^{2}+20y+y^{2}=101
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+20\right)^{2}.
2y^{2}+40y+400+20y+y^{2}=101
Combine y^{2} and y^{2} to get 2y^{2}.
2y^{2}+60y+400+y^{2}=101
Combine 40y and 20y to get 60y.
3y^{2}+60y+400=101
Combine 2y^{2} and y^{2} to get 3y^{2}.
3y^{2}+60y+400-101=0
Subtract 101 from both sides.
3y^{2}+60y+299=0
Subtract 101 from 400 to get 299.
y=\frac{-60±\sqrt{60^{2}-4\times 3\times 299}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 60 for b, and 299 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-60±\sqrt{3600-4\times 3\times 299}}{2\times 3}
Square 60.
y=\frac{-60±\sqrt{3600-12\times 299}}{2\times 3}
Multiply -4 times 3.
y=\frac{-60±\sqrt{3600-3588}}{2\times 3}
Multiply -12 times 299.
y=\frac{-60±\sqrt{12}}{2\times 3}
Add 3600 to -3588.
y=\frac{-60±2\sqrt{3}}{2\times 3}
Take the square root of 12.
y=\frac{-60±2\sqrt{3}}{6}
Multiply 2 times 3.
y=\frac{2\sqrt{3}-60}{6}
Now solve the equation y=\frac{-60±2\sqrt{3}}{6} when ± is plus. Add -60 to 2\sqrt{3}.
y=\frac{\sqrt{3}}{3}-10
Divide -60+2\sqrt{3} by 6.
y=\frac{-2\sqrt{3}-60}{6}
Now solve the equation y=\frac{-60±2\sqrt{3}}{6} when ± is minus. Subtract 2\sqrt{3} from -60.
y=-\frac{\sqrt{3}}{3}-10
Divide -60-2\sqrt{3} by 6.
y=\frac{\sqrt{3}}{3}-10 y=-\frac{\sqrt{3}}{3}-10
The equation is now solved.
y^{2}+40y+400+y^{2}+20y+y^{2}=101
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+20\right)^{2}.
2y^{2}+40y+400+20y+y^{2}=101
Combine y^{2} and y^{2} to get 2y^{2}.
2y^{2}+60y+400+y^{2}=101
Combine 40y and 20y to get 60y.
3y^{2}+60y+400=101
Combine 2y^{2} and y^{2} to get 3y^{2}.
3y^{2}+60y=101-400
Subtract 400 from both sides.
3y^{2}+60y=-299
Subtract 400 from 101 to get -299.
\frac{3y^{2}+60y}{3}=-\frac{299}{3}
Divide both sides by 3.
y^{2}+\frac{60}{3}y=-\frac{299}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}+20y=-\frac{299}{3}
Divide 60 by 3.
y^{2}+20y+10^{2}=-\frac{299}{3}+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+20y+100=-\frac{299}{3}+100
Square 10.
y^{2}+20y+100=\frac{1}{3}
Add -\frac{299}{3} to 100.
\left(y+10\right)^{2}=\frac{1}{3}
Factor y^{2}+20y+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+10\right)^{2}}=\sqrt{\frac{1}{3}}
Take the square root of both sides of the equation.
y+10=\frac{\sqrt{3}}{3} y+10=-\frac{\sqrt{3}}{3}
Simplify.
y=\frac{\sqrt{3}}{3}-10 y=-\frac{\sqrt{3}}{3}-10
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}