Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+4y+4=\left(3y-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
y^{2}+4y+4=9y^{2}-6y+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-1\right)^{2}.
y^{2}+4y+4-9y^{2}=-6y+1
Subtract 9y^{2} from both sides.
-8y^{2}+4y+4=-6y+1
Combine y^{2} and -9y^{2} to get -8y^{2}.
-8y^{2}+4y+4+6y=1
Add 6y to both sides.
-8y^{2}+10y+4=1
Combine 4y and 6y to get 10y.
-8y^{2}+10y+4-1=0
Subtract 1 from both sides.
-8y^{2}+10y+3=0
Subtract 1 from 4 to get 3.
a+b=10 ab=-8\times 3=-24
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -8y^{2}+ay+by+3. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=12 b=-2
The solution is the pair that gives sum 10.
\left(-8y^{2}+12y\right)+\left(-2y+3\right)
Rewrite -8y^{2}+10y+3 as \left(-8y^{2}+12y\right)+\left(-2y+3\right).
-4y\left(2y-3\right)-\left(2y-3\right)
Factor out -4y in the first and -1 in the second group.
\left(2y-3\right)\left(-4y-1\right)
Factor out common term 2y-3 by using distributive property.
y=\frac{3}{2} y=-\frac{1}{4}
To find equation solutions, solve 2y-3=0 and -4y-1=0.
y^{2}+4y+4=\left(3y-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
y^{2}+4y+4=9y^{2}-6y+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-1\right)^{2}.
y^{2}+4y+4-9y^{2}=-6y+1
Subtract 9y^{2} from both sides.
-8y^{2}+4y+4=-6y+1
Combine y^{2} and -9y^{2} to get -8y^{2}.
-8y^{2}+4y+4+6y=1
Add 6y to both sides.
-8y^{2}+10y+4=1
Combine 4y and 6y to get 10y.
-8y^{2}+10y+4-1=0
Subtract 1 from both sides.
-8y^{2}+10y+3=0
Subtract 1 from 4 to get 3.
y=\frac{-10±\sqrt{10^{2}-4\left(-8\right)\times 3}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 10 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-10±\sqrt{100-4\left(-8\right)\times 3}}{2\left(-8\right)}
Square 10.
y=\frac{-10±\sqrt{100+32\times 3}}{2\left(-8\right)}
Multiply -4 times -8.
y=\frac{-10±\sqrt{100+96}}{2\left(-8\right)}
Multiply 32 times 3.
y=\frac{-10±\sqrt{196}}{2\left(-8\right)}
Add 100 to 96.
y=\frac{-10±14}{2\left(-8\right)}
Take the square root of 196.
y=\frac{-10±14}{-16}
Multiply 2 times -8.
y=\frac{4}{-16}
Now solve the equation y=\frac{-10±14}{-16} when ± is plus. Add -10 to 14.
y=-\frac{1}{4}
Reduce the fraction \frac{4}{-16} to lowest terms by extracting and canceling out 4.
y=-\frac{24}{-16}
Now solve the equation y=\frac{-10±14}{-16} when ± is minus. Subtract 14 from -10.
y=\frac{3}{2}
Reduce the fraction \frac{-24}{-16} to lowest terms by extracting and canceling out 8.
y=-\frac{1}{4} y=\frac{3}{2}
The equation is now solved.
y^{2}+4y+4=\left(3y-1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+2\right)^{2}.
y^{2}+4y+4=9y^{2}-6y+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3y-1\right)^{2}.
y^{2}+4y+4-9y^{2}=-6y+1
Subtract 9y^{2} from both sides.
-8y^{2}+4y+4=-6y+1
Combine y^{2} and -9y^{2} to get -8y^{2}.
-8y^{2}+4y+4+6y=1
Add 6y to both sides.
-8y^{2}+10y+4=1
Combine 4y and 6y to get 10y.
-8y^{2}+10y=1-4
Subtract 4 from both sides.
-8y^{2}+10y=-3
Subtract 4 from 1 to get -3.
\frac{-8y^{2}+10y}{-8}=-\frac{3}{-8}
Divide both sides by -8.
y^{2}+\frac{10}{-8}y=-\frac{3}{-8}
Dividing by -8 undoes the multiplication by -8.
y^{2}-\frac{5}{4}y=-\frac{3}{-8}
Reduce the fraction \frac{10}{-8} to lowest terms by extracting and canceling out 2.
y^{2}-\frac{5}{4}y=\frac{3}{8}
Divide -3 by -8.
y^{2}-\frac{5}{4}y+\left(-\frac{5}{8}\right)^{2}=\frac{3}{8}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{5}{4}y+\frac{25}{64}=\frac{3}{8}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{5}{4}y+\frac{25}{64}=\frac{49}{64}
Add \frac{3}{8} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{8}\right)^{2}=\frac{49}{64}
Factor y^{2}-\frac{5}{4}y+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Take the square root of both sides of the equation.
y-\frac{5}{8}=\frac{7}{8} y-\frac{5}{8}=-\frac{7}{8}
Simplify.
y=\frac{3}{2} y=-\frac{1}{4}
Add \frac{5}{8} to both sides of the equation.