Solve for y
y=-2
y=-18
Graph
Share
Copied to clipboard
y^{2}+20y+100-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+10\right)^{2}.
y^{2}+20y+36=0
Subtract 64 from 100 to get 36.
a+b=20 ab=36
To solve the equation, factor y^{2}+20y+36 using formula y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right). To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=2 b=18
The solution is the pair that gives sum 20.
\left(y+2\right)\left(y+18\right)
Rewrite factored expression \left(y+a\right)\left(y+b\right) using the obtained values.
y=-2 y=-18
To find equation solutions, solve y+2=0 and y+18=0.
y^{2}+20y+100-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+10\right)^{2}.
y^{2}+20y+36=0
Subtract 64 from 100 to get 36.
a+b=20 ab=1\times 36=36
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by+36. To find a and b, set up a system to be solved.
1,36 2,18 3,12 4,9 6,6
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 36.
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
Calculate the sum for each pair.
a=2 b=18
The solution is the pair that gives sum 20.
\left(y^{2}+2y\right)+\left(18y+36\right)
Rewrite y^{2}+20y+36 as \left(y^{2}+2y\right)+\left(18y+36\right).
y\left(y+2\right)+18\left(y+2\right)
Factor out y in the first and 18 in the second group.
\left(y+2\right)\left(y+18\right)
Factor out common term y+2 by using distributive property.
y=-2 y=-18
To find equation solutions, solve y+2=0 and y+18=0.
y^{2}+20y+100-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+10\right)^{2}.
y^{2}+20y+36=0
Subtract 64 from 100 to get 36.
y=\frac{-20±\sqrt{20^{2}-4\times 36}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 20 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-20±\sqrt{400-4\times 36}}{2}
Square 20.
y=\frac{-20±\sqrt{400-144}}{2}
Multiply -4 times 36.
y=\frac{-20±\sqrt{256}}{2}
Add 400 to -144.
y=\frac{-20±16}{2}
Take the square root of 256.
y=-\frac{4}{2}
Now solve the equation y=\frac{-20±16}{2} when ± is plus. Add -20 to 16.
y=-2
Divide -4 by 2.
y=-\frac{36}{2}
Now solve the equation y=\frac{-20±16}{2} when ± is minus. Subtract 16 from -20.
y=-18
Divide -36 by 2.
y=-2 y=-18
The equation is now solved.
y^{2}+20y+100-64=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+10\right)^{2}.
y^{2}+20y+36=0
Subtract 64 from 100 to get 36.
y^{2}+20y=-36
Subtract 36 from both sides. Anything subtracted from zero gives its negation.
y^{2}+20y+10^{2}=-36+10^{2}
Divide 20, the coefficient of the x term, by 2 to get 10. Then add the square of 10 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+20y+100=-36+100
Square 10.
y^{2}+20y+100=64
Add -36 to 100.
\left(y+10\right)^{2}=64
Factor y^{2}+20y+100. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+10\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
y+10=8 y+10=-8
Simplify.
y=-2 y=-18
Subtract 10 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}