Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(y+\frac{3}{2}xy+2xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x\left(-2\right)x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(y+\frac{3}{2}xy+2xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(y+\frac{7}{2}xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine \frac{3}{2}xy and 2xy to get \frac{7}{2}xy.
\left(y+\frac{7}{2}xy\right)\left(x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine -\frac{1}{3}x^{4}y^{2} and \frac{4}{3}x^{4}y^{2} to get x^{4}y^{2}.
\left(y+\frac{7}{2}xy\right)\times 0+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine x^{4}y^{2} and -x^{4}y^{2} to get 0.
0+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Anything times zero gives zero.
0+\left(-x\right)y^{3}\left(-6\right)x^{4}
Multiply 3 and -2 to get -6.
\left(-x\right)y^{3}\left(-6\right)x^{4}
Anything plus zero gives itself.
6xy^{3}x^{4}
Multiply -1 and -6 to get 6.
6x^{5}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\left(y+\frac{3}{2}xy+2xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x\left(-2\right)x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(y+\frac{3}{2}xy+2xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(y+\frac{7}{2}xy\right)\left(-\frac{1}{3}x^{4}y^{2}+\frac{4}{3}x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine \frac{3}{2}xy and 2xy to get \frac{7}{2}xy.
\left(y+\frac{7}{2}xy\right)\left(x^{4}y^{2}-x^{4}y^{2}\right)+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine -\frac{1}{3}x^{4}y^{2} and \frac{4}{3}x^{4}y^{2} to get x^{4}y^{2}.
\left(y+\frac{7}{2}xy\right)\times 0+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Combine x^{4}y^{2} and -x^{4}y^{2} to get 0.
0+\left(-x\right)y^{3}\times 3x^{4}\left(-2\right)
Anything times zero gives zero.
0+\left(-x\right)y^{3}\left(-6\right)x^{4}
Multiply 3 and -2 to get -6.
\left(-x\right)y^{3}\left(-6\right)x^{4}
Anything plus zero gives itself.
6xy^{3}x^{4}
Multiply -1 and -6 to get 6.
6x^{5}y^{3}
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.