Evaluate
y\left(y-x\right)
Expand
y^{2}-xy
Share
Copied to clipboard
\frac{\left(xy-x^{2}\right)y}{x-y}\times \frac{x-y}{x}
Divide xy-x^{2} by \frac{x-y}{y} by multiplying xy-x^{2} by the reciprocal of \frac{x-y}{y}.
\frac{xy\left(-x+y\right)}{x-y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{\left(xy-x^{2}\right)y}{x-y}.
\frac{-xy\left(x-y\right)}{x-y}\times \frac{x-y}{x}
Extract the negative sign in y-x.
-xy\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
-\left(x-y\right)y
Cancel out x and x.
\left(-x+y\right)y
Use the distributive property to multiply -1 by x-y.
-xy+y^{2}
Use the distributive property to multiply -x+y by y.
\frac{\left(xy-x^{2}\right)y}{x-y}\times \frac{x-y}{x}
Divide xy-x^{2} by \frac{x-y}{y} by multiplying xy-x^{2} by the reciprocal of \frac{x-y}{y}.
\frac{xy\left(-x+y\right)}{x-y}\times \frac{x-y}{x}
Factor the expressions that are not already factored in \frac{\left(xy-x^{2}\right)y}{x-y}.
\frac{-xy\left(x-y\right)}{x-y}\times \frac{x-y}{x}
Extract the negative sign in y-x.
-xy\times \frac{x-y}{x}
Cancel out x-y in both numerator and denominator.
-\left(x-y\right)y
Cancel out x and x.
\left(-x+y\right)y
Use the distributive property to multiply -1 by x-y.
-xy+y^{2}
Use the distributive property to multiply -x+y by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}