Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{\left(x-y\right)\left(x-y\right)}{x-y}-\frac{4y^{2}}{x-y}\right)\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-y times \frac{x-y}{x-y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{x-y} and \frac{4y^{2}}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}-xy-xy+y^{2}-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(\frac{\left(x+y\right)\left(x+y\right)}{x+y}-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+y times \frac{x+y}{x+y}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{\left(x+y\right)\left(x+y\right)-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x+y} and \frac{4x^{2}}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{x^{2}+xy+xy+y^{2}-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-4x^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{-3x^{2}+y^{2}+2xy}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}+xy+xy+y^{2}-4x^{2}.
\frac{\frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Multiply \frac{x^{2}-3y^{2}-2xy}{x-y} times \frac{-3x^{2}+y^{2}+2xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x+y\right)\left(x-3y\right)\left(-x+y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Factor the expressions that are not already factored in \frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}.
\frac{\frac{-\left(x+y\right)\left(x-3y\right)\left(x-y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Extract the negative sign in -x+y.
\frac{-\left(x-3y\right)\left(3x+y\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-3x^{2}+8xy+3y^{2}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Expand the expression.
\frac{-3x^{2}+8xy+3y^{2}}{3x+3y-\frac{8xy}{x-y}}
Use the distributive property to multiply 3 by x+y.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)}{x-y}-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+3y times \frac{x-y}{x-y}.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)-8xy}{x-y}}
Since \frac{\left(3x+3y\right)\left(x-y\right)}{x-y} and \frac{8xy}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3xy+3yx-3y^{2}-8xy}{x-y}}
Do the multiplications in \left(3x+3y\right)\left(x-y\right)-8xy.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3y^{2}-8xy}{x-y}}
Combine like terms in 3x^{2}-3xy+3yx-3y^{2}-8xy.
\frac{\left(-3x^{2}+8xy+3y^{2}\right)\left(x-y\right)}{3x^{2}-3y^{2}-8xy}
Divide -3x^{2}+8xy+3y^{2} by \frac{3x^{2}-3y^{2}-8xy}{x-y} by multiplying -3x^{2}+8xy+3y^{2} by the reciprocal of \frac{3x^{2}-3y^{2}-8xy}{x-y}.
\frac{-\left(x-y\right)\left(3x^{2}-8xy-3y^{2}\right)}{3x^{2}-8xy-3y^{2}}
Extract the negative sign in -3x^{2}+8xy+3y^{2}.
-\left(x-y\right)
Cancel out 3x^{2}-8xy-3y^{2} in both numerator and denominator.
-x+y
To find the opposite of x-y, find the opposite of each term.
\frac{\left(\frac{\left(x-y\right)\left(x-y\right)}{x-y}-\frac{4y^{2}}{x-y}\right)\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-y times \frac{x-y}{x-y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{x-y} and \frac{4y^{2}}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}-xy-xy+y^{2}-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(\frac{\left(x+y\right)\left(x+y\right)}{x+y}-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+y times \frac{x+y}{x+y}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{\left(x+y\right)\left(x+y\right)-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x+y} and \frac{4x^{2}}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{x^{2}+xy+xy+y^{2}-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-4x^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{-3x^{2}+y^{2}+2xy}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}+xy+xy+y^{2}-4x^{2}.
\frac{\frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Multiply \frac{x^{2}-3y^{2}-2xy}{x-y} times \frac{-3x^{2}+y^{2}+2xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x+y\right)\left(x-3y\right)\left(-x+y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Factor the expressions that are not already factored in \frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}.
\frac{\frac{-\left(x+y\right)\left(x-3y\right)\left(x-y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Extract the negative sign in -x+y.
\frac{-\left(x-3y\right)\left(3x+y\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-3x^{2}+8xy+3y^{2}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Expand the expression.
\frac{-3x^{2}+8xy+3y^{2}}{3x+3y-\frac{8xy}{x-y}}
Use the distributive property to multiply 3 by x+y.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)}{x-y}-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+3y times \frac{x-y}{x-y}.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)-8xy}{x-y}}
Since \frac{\left(3x+3y\right)\left(x-y\right)}{x-y} and \frac{8xy}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3xy+3yx-3y^{2}-8xy}{x-y}}
Do the multiplications in \left(3x+3y\right)\left(x-y\right)-8xy.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3y^{2}-8xy}{x-y}}
Combine like terms in 3x^{2}-3xy+3yx-3y^{2}-8xy.
\frac{\left(-3x^{2}+8xy+3y^{2}\right)\left(x-y\right)}{3x^{2}-3y^{2}-8xy}
Divide -3x^{2}+8xy+3y^{2} by \frac{3x^{2}-3y^{2}-8xy}{x-y} by multiplying -3x^{2}+8xy+3y^{2} by the reciprocal of \frac{3x^{2}-3y^{2}-8xy}{x-y}.
\frac{-\left(x-y\right)\left(3x^{2}-8xy-3y^{2}\right)}{3x^{2}-8xy-3y^{2}}
Extract the negative sign in -3x^{2}+8xy+3y^{2}.
-\left(x-y\right)
Cancel out 3x^{2}-8xy-3y^{2} in both numerator and denominator.
-x+y
To find the opposite of x-y, find the opposite of each term.