Evaluate
y-x
Expand
y-x
Share
Copied to clipboard
\frac{\left(\frac{\left(x-y\right)\left(x-y\right)}{x-y}-\frac{4y^{2}}{x-y}\right)\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-y times \frac{x-y}{x-y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{x-y} and \frac{4y^{2}}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}-xy-xy+y^{2}-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(\frac{\left(x+y\right)\left(x+y\right)}{x+y}-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+y times \frac{x+y}{x+y}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{\left(x+y\right)\left(x+y\right)-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x+y} and \frac{4x^{2}}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{x^{2}+xy+xy+y^{2}-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-4x^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{-3x^{2}+y^{2}+2xy}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}+xy+xy+y^{2}-4x^{2}.
\frac{\frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Multiply \frac{x^{2}-3y^{2}-2xy}{x-y} times \frac{-3x^{2}+y^{2}+2xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x+y\right)\left(x-3y\right)\left(-x+y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Factor the expressions that are not already factored in \frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}.
\frac{\frac{-\left(x+y\right)\left(x-3y\right)\left(x-y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Extract the negative sign in -x+y.
\frac{-\left(x-3y\right)\left(3x+y\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-3x^{2}+8xy+3y^{2}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Expand the expression.
\frac{-3x^{2}+8xy+3y^{2}}{3x+3y-\frac{8xy}{x-y}}
Use the distributive property to multiply 3 by x+y.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)}{x-y}-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+3y times \frac{x-y}{x-y}.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)-8xy}{x-y}}
Since \frac{\left(3x+3y\right)\left(x-y\right)}{x-y} and \frac{8xy}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3xy+3yx-3y^{2}-8xy}{x-y}}
Do the multiplications in \left(3x+3y\right)\left(x-y\right)-8xy.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3y^{2}-8xy}{x-y}}
Combine like terms in 3x^{2}-3xy+3yx-3y^{2}-8xy.
\frac{\left(-3x^{2}+8xy+3y^{2}\right)\left(x-y\right)}{3x^{2}-3y^{2}-8xy}
Divide -3x^{2}+8xy+3y^{2} by \frac{3x^{2}-3y^{2}-8xy}{x-y} by multiplying -3x^{2}+8xy+3y^{2} by the reciprocal of \frac{3x^{2}-3y^{2}-8xy}{x-y}.
\frac{-\left(x-y\right)\left(3x^{2}-8xy-3y^{2}\right)}{3x^{2}-8xy-3y^{2}}
Extract the negative sign in -3x^{2}+8xy+3y^{2}.
-\left(x-y\right)
Cancel out 3x^{2}-8xy-3y^{2} in both numerator and denominator.
-x+y
To find the opposite of x-y, find the opposite of each term.
\frac{\left(\frac{\left(x-y\right)\left(x-y\right)}{x-y}-\frac{4y^{2}}{x-y}\right)\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x-y times \frac{x-y}{x-y}.
\frac{\frac{\left(x-y\right)\left(x-y\right)-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x-y\right)\left(x-y\right)}{x-y} and \frac{4y^{2}}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-xy-xy+y^{2}-4y^{2}}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x-y\right)\left(x-y\right)-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(x+y-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}-xy-xy+y^{2}-4y^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\left(\frac{\left(x+y\right)\left(x+y\right)}{x+y}-\frac{4x^{2}}{x+y}\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+y times \frac{x+y}{x+y}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{\left(x+y\right)\left(x+y\right)-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Since \frac{\left(x+y\right)\left(x+y\right)}{x+y} and \frac{4x^{2}}{x+y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{x^{2}+xy+xy+y^{2}-4x^{2}}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Do the multiplications in \left(x+y\right)\left(x+y\right)-4x^{2}.
\frac{\frac{x^{2}-3y^{2}-2xy}{x-y}\times \frac{-3x^{2}+y^{2}+2xy}{x+y}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Combine like terms in x^{2}+xy+xy+y^{2}-4x^{2}.
\frac{\frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Multiply \frac{x^{2}-3y^{2}-2xy}{x-y} times \frac{-3x^{2}+y^{2}+2xy}{x+y} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(x+y\right)\left(x-3y\right)\left(-x+y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Factor the expressions that are not already factored in \frac{\left(x^{2}-3y^{2}-2xy\right)\left(-3x^{2}+y^{2}+2xy\right)}{\left(x-y\right)\left(x+y\right)}.
\frac{\frac{-\left(x+y\right)\left(x-3y\right)\left(x-y\right)\left(3x+y\right)}{\left(x+y\right)\left(x-y\right)}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Extract the negative sign in -x+y.
\frac{-\left(x-3y\right)\left(3x+y\right)}{3\left(x+y\right)-\frac{8xy}{x-y}}
Cancel out \left(x+y\right)\left(x-y\right) in both numerator and denominator.
\frac{-3x^{2}+8xy+3y^{2}}{3\left(x+y\right)-\frac{8xy}{x-y}}
Expand the expression.
\frac{-3x^{2}+8xy+3y^{2}}{3x+3y-\frac{8xy}{x-y}}
Use the distributive property to multiply 3 by x+y.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)}{x-y}-\frac{8xy}{x-y}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3x+3y times \frac{x-y}{x-y}.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{\left(3x+3y\right)\left(x-y\right)-8xy}{x-y}}
Since \frac{\left(3x+3y\right)\left(x-y\right)}{x-y} and \frac{8xy}{x-y} have the same denominator, subtract them by subtracting their numerators.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3xy+3yx-3y^{2}-8xy}{x-y}}
Do the multiplications in \left(3x+3y\right)\left(x-y\right)-8xy.
\frac{-3x^{2}+8xy+3y^{2}}{\frac{3x^{2}-3y^{2}-8xy}{x-y}}
Combine like terms in 3x^{2}-3xy+3yx-3y^{2}-8xy.
\frac{\left(-3x^{2}+8xy+3y^{2}\right)\left(x-y\right)}{3x^{2}-3y^{2}-8xy}
Divide -3x^{2}+8xy+3y^{2} by \frac{3x^{2}-3y^{2}-8xy}{x-y} by multiplying -3x^{2}+8xy+3y^{2} by the reciprocal of \frac{3x^{2}-3y^{2}-8xy}{x-y}.
\frac{-\left(x-y\right)\left(3x^{2}-8xy-3y^{2}\right)}{3x^{2}-8xy-3y^{2}}
Extract the negative sign in -3x^{2}+8xy+3y^{2}.
-\left(x-y\right)
Cancel out 3x^{2}-8xy-3y^{2} in both numerator and denominator.
-x+y
To find the opposite of x-y, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}