Solve for x
x=\frac{yz-1}{y+z}
y\neq -z
Solve for y
y=\frac{xz+1}{z-x}
x\neq z
Share
Copied to clipboard
x^{2}-xz-yx+yz=1+x^{2}
Use the distributive property to multiply x-y by x-z.
x^{2}-xz-yx+yz-x^{2}=1
Subtract x^{2} from both sides.
-xz-yx+yz=1
Combine x^{2} and -x^{2} to get 0.
-xz-yx=1-yz
Subtract yz from both sides.
\left(-z-y\right)x=1-yz
Combine all terms containing x.
\left(-y-z\right)x=1-yz
The equation is in standard form.
\frac{\left(-y-z\right)x}{-y-z}=\frac{1-yz}{-y-z}
Divide both sides by -y-z.
x=\frac{1-yz}{-y-z}
Dividing by -y-z undoes the multiplication by -y-z.
x=-\frac{1-yz}{y+z}
Divide 1-yz by -y-z.
x^{2}-xz-yx+yz=1+x^{2}
Use the distributive property to multiply x-y by x-z.
-xz-yx+yz=1+x^{2}-x^{2}
Subtract x^{2} from both sides.
-xz-yx+yz=1
Combine x^{2} and -x^{2} to get 0.
-yx+yz=1+xz
Add xz to both sides.
\left(-x+z\right)y=1+xz
Combine all terms containing y.
\left(z-x\right)y=xz+1
The equation is in standard form.
\frac{\left(z-x\right)y}{z-x}=\frac{xz+1}{z-x}
Divide both sides by -x+z.
y=\frac{xz+1}{z-x}
Dividing by -x+z undoes the multiplication by -x+z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}