Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{2}-y^{2}-\left(x+y\right)^{2}+2y\left(y-x\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(x^{2}+2xy+y^{2}\right)+2y\left(y-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
x^{2}-y^{2}-x^{2}-2xy-y^{2}+2y\left(y-x\right)
To find the opposite of x^{2}+2xy+y^{2}, find the opposite of each term.
-y^{2}-2xy-y^{2}+2y\left(y-x\right)
Combine x^{2} and -x^{2} to get 0.
-2y^{2}-2xy+2y\left(y-x\right)
Combine -y^{2} and -y^{2} to get -2y^{2}.
-2y^{2}-2xy+2y^{2}-2yx
Use the distributive property to multiply 2y by y-x.
-2xy-2yx
Combine -2y^{2} and 2y^{2} to get 0.
-4xy
Combine -2xy and -2yx to get -4xy.
x^{2}-y^{2}-\left(x+y\right)^{2}+2y\left(y-x\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
x^{2}-y^{2}-\left(x^{2}+2xy+y^{2}\right)+2y\left(y-x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
x^{2}-y^{2}-x^{2}-2xy-y^{2}+2y\left(y-x\right)
To find the opposite of x^{2}+2xy+y^{2}, find the opposite of each term.
-y^{2}-2xy-y^{2}+2y\left(y-x\right)
Combine x^{2} and -x^{2} to get 0.
-2y^{2}-2xy+2y\left(y-x\right)
Combine -y^{2} and -y^{2} to get -2y^{2}.
-2y^{2}-2xy+2y^{2}-2yx
Use the distributive property to multiply 2y by y-x.
-2xy-2yx
Combine -2y^{2} and 2y^{2} to get 0.
-4xy
Combine -2xy and -2yx to get -4xy.