Evaluate
\left(x-y\right)\left(4x+3y\right)
Expand
4x^{2}-xy-3y^{2}
Share
Copied to clipboard
5x^{2}+3xy-5yx-3y^{2}-x\left(x-y\right)
Apply the distributive property by multiplying each term of x-y by each term of 5x+3y.
5x^{2}-2xy-3y^{2}-x\left(x-y\right)
Combine 3xy and -5yx to get -2xy.
5x^{2}-2xy-3y^{2}-\left(x^{2}-xy\right)
Use the distributive property to multiply x by x-y.
5x^{2}-2xy-3y^{2}-x^{2}-\left(-xy\right)
To find the opposite of x^{2}-xy, find the opposite of each term.
5x^{2}-2xy-3y^{2}-x^{2}+xy
The opposite of -xy is xy.
4x^{2}-2xy-3y^{2}+xy
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-xy-3y^{2}
Combine -2xy and xy to get -xy.
5x^{2}+3xy-5yx-3y^{2}-x\left(x-y\right)
Apply the distributive property by multiplying each term of x-y by each term of 5x+3y.
5x^{2}-2xy-3y^{2}-x\left(x-y\right)
Combine 3xy and -5yx to get -2xy.
5x^{2}-2xy-3y^{2}-\left(x^{2}-xy\right)
Use the distributive property to multiply x by x-y.
5x^{2}-2xy-3y^{2}-x^{2}-\left(-xy\right)
To find the opposite of x^{2}-xy, find the opposite of each term.
5x^{2}-2xy-3y^{2}-x^{2}+xy
The opposite of -xy is xy.
4x^{2}-2xy-3y^{2}+xy
Combine 5x^{2} and -x^{2} to get 4x^{2}.
4x^{2}-xy-3y^{2}
Combine -2xy and xy to get -xy.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}