Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

x^{2}-2xy+y^{2}+\left(x-y\right)\left(x+y\right)-2x\left(x+2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x^{2}-2xy+y^{2}+x^{2}-y^{2}-2x\left(x+2y\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2x^{2}-2xy+y^{2}-y^{2}-2x\left(x+2y\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2xy-2x\left(x+2y\right)
Combine y^{2} and -y^{2} to get 0.
2x^{2}-2xy-2x^{2}-4xy
Use the distributive property to multiply -2x by x+2y.
-2xy-4xy
Combine 2x^{2} and -2x^{2} to get 0.
-6xy
Combine -2xy and -4xy to get -6xy.
x^{2}-2xy+y^{2}+\left(x-y\right)\left(x+y\right)-2x\left(x+2y\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-y\right)^{2}.
x^{2}-2xy+y^{2}+x^{2}-y^{2}-2x\left(x+2y\right)
Consider \left(x-y\right)\left(x+y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2x^{2}-2xy+y^{2}-y^{2}-2x\left(x+2y\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-2xy-2x\left(x+2y\right)
Combine y^{2} and -y^{2} to get 0.
2x^{2}-2xy-2x^{2}-4xy
Use the distributive property to multiply -2x by x+2y.
-2xy-4xy
Combine 2x^{2} and -2x^{2} to get 0.
-6xy
Combine -2xy and -4xy to get -6xy.