Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

x-y+iy-i=2x+3y+\left(2y+1\right)i
Use the distributive property to multiply y-1 by i.
x+\left(-1+i\right)y-i=2x+3y+\left(2y+1\right)i
Combine -y and iy to get \left(-1+i\right)y.
x+\left(-1+i\right)y-i=2x+3y+2iy+i
Use the distributive property to multiply 2y+1 by i.
x+\left(-1+i\right)y-i=2x+\left(3+2i\right)y+i
Combine 3y and 2iy to get \left(3+2i\right)y.
x+\left(-1+i\right)y-i-2x=\left(3+2i\right)y+i
Subtract 2x from both sides.
-x+\left(-1+i\right)y-i=\left(3+2i\right)y+i
Combine x and -2x to get -x.
-x-i=\left(3+2i\right)y+i-\left(-1+i\right)y
Subtract \left(-1+i\right)y from both sides.
-x-i=\left(4+i\right)y+i
Combine \left(3+2i\right)y and \left(1-i\right)y to get \left(4+i\right)y.
-x=\left(4+i\right)y+i+i
Add i to both sides.
-x=\left(4+i\right)y+2i
Add i and i to get 2i.
\frac{-x}{-1}=\frac{\left(4+i\right)y+2i}{-1}
Divide both sides by -1.
x=\frac{\left(4+i\right)y+2i}{-1}
Dividing by -1 undoes the multiplication by -1.
x=\left(-4-i\right)y-2i
Divide \left(4+i\right)y+2i by -1.
x-y+iy-i=2x+3y+\left(2y+1\right)i
Use the distributive property to multiply y-1 by i.
x+\left(-1+i\right)y-i=2x+3y+\left(2y+1\right)i
Combine -y and iy to get \left(-1+i\right)y.
x+\left(-1+i\right)y-i=2x+3y+2iy+i
Use the distributive property to multiply 2y+1 by i.
x+\left(-1+i\right)y-i=2x+\left(3+2i\right)y+i
Combine 3y and 2iy to get \left(3+2i\right)y.
x+\left(-1+i\right)y-i-\left(3+2i\right)y=2x+i
Subtract \left(3+2i\right)y from both sides.
x+\left(-4-i\right)y-i=2x+i
Combine \left(-1+i\right)y and \left(-3-2i\right)y to get \left(-4-i\right)y.
\left(-4-i\right)y-i=2x+i-x
Subtract x from both sides.
\left(-4-i\right)y-i=x+i
Combine 2x and -x to get x.
\left(-4-i\right)y=x+i+i
Add i to both sides.
\left(-4-i\right)y=x+2i
Add i and i to get 2i.
\frac{\left(-4-i\right)y}{-4-i}=\frac{x+2i}{-4-i}
Divide both sides by -4-i.
y=\frac{x+2i}{-4-i}
Dividing by -4-i undoes the multiplication by -4-i.
y=\left(-\frac{4}{17}+\frac{1}{17}i\right)x+\left(-\frac{2}{17}-\frac{8}{17}i\right)
Divide x+2i by -4-i.